Hybrid algorithm for materialised view selection Online publication date: Mon, 16-Nov-2020
by Raouf Mayata; Abdelmadjid Boukra
International Journal of Innovative Computing and Applications (IJICA), Vol. 11, No. 4, 2020
Abstract: Data warehouses store current and historical data, which are used for creating reports, for the purpose of supporting decision-making. A data warehouse uses materialised views in order to reduce the query processing time. Since materialising all view is not possible, due to space and maintenance constraints, materialised view selection became one of the crucial decisions in designing a data warehouse for optimal efficiency. In this paper the authors present a new hybrid algorithm named (QCBO) based on both quantum inspired evolutionary algorithm (QEA) and colliding bodies optimisation (CBO) to resolve the materialised view selection (MVS) problem. Also, some aspects of the well-known greedy algorithm (HRU) are included. The experimental results show that QCBO provides a fair balance between exploitation and exploration. Comparative study reveals the efficiency of the proposed algorithm in term of solution quality compared to well-known algorithms.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Innovative Computing and Applications (IJICA):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com