Structural design and analysis of a lower limb exoskeleton for elderly Online publication date: Thu, 19-Nov-2020
by Vishnu Vardhan Dadi; P.V.N.S. Sathwik; D. Mahesh; Dala Jaswanth; S. Karthik Kumar; M.M. Ramya; D. Dinakaran
International Journal of Advanced Mechatronic Systems (IJAMECHS), Vol. 8, No. 2/3, 2020
Abstract: Rehabilitation of the elderly is often limited to restoration of the ability to perform as many activities of daily living. Mobility is identified as most essential rehabilitation required for elderly. Sit-to-stand (STS) manoeuvre is a common aspect of mobility. In this paper, a lower limb exoskeleton is designed to assist elderly during STS cycle. The design of lower limb exoskeleton is tested for its structural strength. The mechanical design of the exoskeleton can adapt to varying body shapes (height, weight and waist circumference) of elderly. Static structural analysis for stand position is carried out in Ansys workbench to find whether the design can withstand a maximum load during the static condition. Modal analysis was done to find the natural frequency vibration of the design and the deformation of the exoskeleton with respect to the mode vibrations.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Advanced Mechatronic Systems (IJAMECHS):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com