Fuzzy logic controller design methodology for Cartesian robot control
by Y. Touati, Y. Amirat
International Journal of Computer Applications in Technology (IJCAT), Vol. 27, No. 2/3, 2006

Abstract: This paper presents an approach for complex task control involving robot-environment interaction. For this purpose, an effective hybrid force/position based-approach for MIMO robot control is proposed. This approach is based on Fuzzy Logic Controller (FLC) design and optimisation methodology operating in two stages: At the first stage, the FLC is trained offline on the basis of data acquired during free motion of the robot, in order to map FLC outputs to real behaviour. A method based on Solis' and Wetts' algorithm is then applied for fuzzy parameter optimisation so that the constraints in terms of interpretability of the predefined rules are respected. Finally, an online learning is implemented into the proposed control structure. The approach has been implemented into an experimental setup, including a 2D Cartesian robot linked to a C5 parallel robot, performing contour following under force constraints. The analysis of the obtained results shows the efficiency of the proposed approach.

Online publication date: Thu, 19-Oct-2006

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Computer Applications in Technology (IJCAT):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com