Limit analysis of masonry arch bridges through an adaptive GA-NURBS upper-bound approach Online publication date: Tue, 15-Dec-2020
by Andrea Chiozzi; Nicola Grillanda; Gabriele Milani; Antonio Tralli
International Journal of Masonry Research and Innovation (IJMRI), Vol. 5, No. 4, 2020
Abstract: This paper investigates the application of a fast and reliable NURBS-based kinematic limit analysis approach for the assessment of the collapse behaviour of masonry bridges. This approach relies on the description of the geometry of the bridge structure by means of NURBS approximating functions. Starting from the known geometry, an assembly of rigid bodies can be generated, composed by very few elements which still provide an exact representation of the original geometry. The main properties of masonry material are accounted for through homogenisation and an upper-bound formulation for the limit analysis of the obtained mesh is devised. The approach is capable of accurately predicting the load bearing capacity of masonry bridges with arbitrary geometry and load configuration, provided that the initial mesh is adjusted by means of a suitably meta-heuristic approach (i.e., a genetic algorithm) until element edges correctly approximate the actual yield lines of the collapse mechanism.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Masonry Research and Innovation (IJMRI):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com