Numerical investigation of Al2O3 nanoparticle effect on a boiling forced swirl flow field: application to the ITER project Online publication date: Mon, 04-Jan-2021
by Ataollah Rabiee; Alireza Atf; Amir Hossein Kamalinia
International Journal of Nuclear Energy Science and Technology (IJNEST), Vol. 14, No. 2, 2020
Abstract: One of the most important issues in design of the nuclear fusion power plants is the heat removal from the hottest region at the divertor. Various methods could be employed in order to improve the heat transfer efficiency such as generating turbulent flow and injection of nanoparticles in the host fluid. In the current study, water/Al2O3 nanofluid forced swirl flow boiling has been investigated by using homogeneous thermophysical model within Eulerian-Eulerian framework through a twisted tape tube and boiling phenomenon was modelled using the Rensselear Polytechnic Institute approach. In addition to comparing the results with the experimental data and their reasonable agreement, it was evidenced that higher flow mixing results in more uniform bulk temperature and lower wall temperature along the twisted tape tube. The presence of Al2O3 nanoparticles in the boiling flow field showed that increasing the nanoparticle concentration leads to a reduced vapour volume fraction and wall temperature.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Nuclear Energy Science and Technology (IJNEST):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com