Fluid-structure interaction analysis of the return pipeline in the high-pressure and large-flow-rate hydraulic power system
by Yong Sang; Pengkun Liu; Xudong Wang; Weiqi Sun; Jianlong Zhao
Progress in Computational Fluid Dynamics, An International Journal (PCFD), Vol. 21, No. 1, 2021

Abstract: This paper aims to investigate the dynamic characteristic of the return pipeline in the high-pressure and large-flow-rate hydraulic power system. First, the geometry model of the pipeline is established, and a one-way coupling fluid structure method is introduced. The modal analyses with empty and filled pipelines are performed and compared. Then, the pipeline resonance phenomenon is investigated, and the response frequency is achieved by the fast Fourier transformation (FFT) analysis, the results are inconsistent with the experiments. Besides, the dynamic response of the pipeline is simulated. Dynamic mesh and user define function (UDF) are adopted, and the pipeline vibration and water hammer phenomenon are observed. Finally, the dynamic characteristics of the pipeline under different fluid velocities and wall thickness are investigated. The results show that the pipeline valve-induced vibration cannot be lightened by reducing the fluid inlet velocity but can be significantly mitigated by increasing the wall thickness.

Online publication date: Mon, 25-Jan-2021

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the Progress in Computational Fluid Dynamics, An International Journal (PCFD):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com