Chattering and bias-free design of operator-based nonlinear sliding mode control for a WPT system Online publication date: Mon, 25-Jan-2021
by Koki Takasu; Mingcong Deng; Yuichi Noge
International Journal of Advanced Mechatronic Systems (IJAMECHS), Vol. 8, No. 4, 2020
Abstract: A wireless power transfer (WPT) system via magnetic resonance coupling method is attracting attention to high convenience. A WPT system has problems such as power transmitting loss and output voltage fluctuation due to the change in the coupling coefficient and the load state. In previous method, sliding mode control system as a tracking controller considering nonlinearity and uncertainty has been proposed, but the output of this control system had bias and chattering. This paper proposes operator-based nonlinear sliding mode control system to reduce chattering and bias simultaneously for a WPT system using buck converter. First, the model of the WPT system using rectifier and buck converter is explained and dynamics formulas are derived. Next, the proposed operator-based nonlinear sliding mode control system design for the WPT system is described and tracking performance is confirmed. Finally, the result of simulation of constant voltage control and comparison with the previous method is shown.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Advanced Mechatronic Systems (IJAMECHS):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com