Orthogonal matching pursuit-based feature selection for motor-imagery EEG signal classification
by Rajdeep Chatterjee; Ankita Chatterjee
International Journal of Computer Applications in Technology (IJCAT), Vol. 64, No. 4, 2020

Abstract: This paper focuses on a framework that uses a small number of features to obtain high-quality classification accuracy of left/right-hand movement motor-imagery EEG signal. Motor-imagery EEG signal has been filtered, and suitable features are extracted using a temporal sliding window-based approach. These extracted features from overlapping and non-overlapping approaches are further compared based on three different types of feature extraction techniques: band power, wavelet energy entropy, and adaptive autoregressive model. The overlapping segments with wavelet energy entropy provide the best classification accuracy over other alternatives. The obtained classification accuracy is 91.43%, the highest ever reported accuracy for BCI Competition II data set III. Subsequently, Orthogonal Matching Pursuit (OMP) technique is used to select the subset of most discriminating features from the entire feature-set. It reduces the computation cost but still retains the quality of the classification results with only 1.43% information loss (that is, 90% classification accuracy), whereas the features-set size reduction is 75% for the same. It is found that the wavelet energy entropy technique performs consistently well in all the variants of our experiments and obtains a mean accuracy difference of 0.95% only.

Online publication date: Thu, 28-Jan-2021

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Computer Applications in Technology (IJCAT):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com