Artificial neural network modelling technique in predicting Western Australian seasonal rainfall
by Iqbal Hossain; H.M. Rasel; Fatemeh Mekanik; Monzur Alam Imteaz
International Journal of Water (IJW), Vol. 14, No. 1, 2020

Abstract: This paper presents the efficiency of non-linear modelling technique in predicting long-term seasonal rainfall of Western Australia. One of the commonly used non-linear modelling approaches, artificial neural network (ANN) was adopted for the construction of the non-linear models. The models were developed considering the past values of El Nino southern oscillation (ENSO) and Indian Ocean Dipole (IOD) as the probable influential variables of rainfall. The ANN models were constructed adopting the algorithm proposed by Lavenberg-Marquardt. The models were developed and tested for three rainfall stations in Western Australia. The models showed good generalisation capability of Western Australian spring rainfalls with Pearson correlations varying from 0.46 to 0.82 during the training phase and 0.55 to 0.96 during the testing phase. The errors and index of agreement of the IOD-ENSO based ANN models were also acceptable to be applied for rainfall forecasting.

Online publication date: Mon, 01-Feb-2021

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Water (IJW):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com