Residual power series method for the time fractional Fornberg-Whitham equation Online publication date: Tue, 02-Feb-2021
by Jianke Zhang; Luyang Yin
International Journal of Dynamical Systems and Differential Equations (IJDSDE), Vol. 10, No. 6, 2020
Abstract: The purpose of this paper is to solve the time fractional Fornberg-Whitham equation by the residual power series method, where the fractional derivatives are in Caputo sense. According to the definition of generalised fractional power series, the solutions of the fractional differential equations are approximatively expanded and substituted into the differential equations. The coefficients to be determined in the approximate solutions are calculated according to the residual functions and the initial conditions, and the approximate analytical solutions of the equations can be obtained. Finally, the approximate analytical solutions are compared with the exact solutions. The results show that the residual power series method is convenient and effective for solving the time fractional Fornberg-Whitham equation.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Dynamical Systems and Differential Equations (IJDSDE):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com