Image compression based on adaptive image thresholding by maximising Shannon or fuzzy entropy using teaching learning based optimisation Online publication date: Tue, 09-Feb-2021
by Karri Chiranjeevi; Umaranjan Jena; M.V. Nageswara Rao
International Journal of Advanced Intelligence Paradigms (IJAIP), Vol. 18, No. 2, 2021
Abstract: In this paper, teaching leaning based optimisation (TLBO) is used for maximising Shannon entropy or fuzzy entropy for effective image thresholding which leads to better image compression with higher peak signal to noise ratio (PSNR). The conventional multilevel thresholding methods are efficient when bi-level thresholding. However, they are computationally expensive extending to multilevel thresholding since they exhaustively search the optimal thresholds to optimise the objective functions. To overcome this drawback, a TLBO based multilevel image thresholding is proposed by maximising Shannon entropy or fuzzy entropy and results are compared with differential evolution, particle swarm optimisation and bat algorithm and proved better in standard deviation, PSNR, weighted PSNR and reconstructed image quality. The performance of the proposed algorithm is found better with fuzzy entropy compared to Shannon entropy.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Advanced Intelligence Paradigms (IJAIP):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com