Reducing uncertainty and obtaining superior performance by segmentation based on algebraic inequalities
by Michael Todinov
International Journal of Reliability and Safety (IJRS), Vol. 14, No. 2/3, 2020

Abstract: The paper demonstrates for the first time uncertainty reduction and attaining superior performance through segmentation based on algebraic inequalities. Meaningful interpretation of algebraic inequalities has been used for generating new knowledge in unrelated application domains. Thus, the method of segmentation through an abstract inequality led to a new theorem related to electrical circuits. The power output from a source with particular voltage, on elements connected in series, is smaller than the total power output from the segmented sources applied to the individual elements. Segmentation attained through the same abstract inequality led to another new theorem related to electrical capacitors. The energy stored by a charge of given size on a single capacitor is smaller than the total energy stored in multiple capacitors with the same equivalent capacity, by segmenting the initial charge over the separate capacitors. Finally, inequalities based on sub-additive and super-additive functions have been introduced for reducing uncertainty and obtaining superior performance by a segmentation or aggregation of controlling factors. By a meaningful interpretation of sub-additive and super-additive inequalities, superior performance has been achieved for processes described by a power-law dependence.

Online publication date: Fri, 26-Feb-2021

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Reliability and Safety (IJRS):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com