Deep neural networks for multimodal data fusion and affect recognition Online publication date: Mon, 08-Mar-2021
by Dhruv Bhandari; Sandeep Paul; Apurva Narayan
International Journal of Artificial Intelligence and Soft Computing (IJAISC), Vol. 7, No. 2, 2020
Abstract: This paper proposes novel deep neural network models to handle multimodal data. The proposed models seamlessly facilitate fusion of multimodal inputs and bring about dimensional reduction of the input feature space. The architecture employs multimodal stacked autoencoder in conjunction with multi-layer perceptron-based regression model. Two variants of the architecture are proposed. Experiments have been performed on the multimodal benchmark dataset (RECOLA) to illustrate the importance of multimodality for affect recognition. The proposed architectures are trained using effective training strategies, specifically designed to reduce the number of tuneable parameters for multimodal applications. The results obtained are encouraging and the proposed approach is computationally less expensive than the existing approaches. The performance is better or at par with the other techniques.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Artificial Intelligence and Soft Computing (IJAISC):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com