Performance analysis of CNN fusion based brain tumour detection using Chan-Vese and level set segmentation algorithms Online publication date: Thu, 11-Mar-2021
by K. Rajesh Babu; P.V. Nagajaneyulu; K. Satya Prasad
International Journal of Signal and Imaging Systems Engineering (IJSISE), Vol. 12, No. 1/2, 2020
Abstract: Early diagnosis of a brain tumour may increase life expectancy. Magnetic resonance imaging (MRI) accompanied by several segmentation algorithms is preferred as a reliable method for assessment. In this study, first noise removed by median filter and dimensionality of datasets reduced by using random projection transformation (RPT). Next, the pre-processed images are clustered by using K-means and fuzzy c-means (FCM). In the very next step, the clustered images multi-features are fused by different data fusion approaches, and then segment the exact tumour area by using the active contour models such as level set method (LSM) and Chan-Vese (C-V). The performance of clustered based segmentation and fusion-based segmentation in terms of various fusion metrics. The results of both clustered based and fusion-based methods revealed that the CNN fusion-based segmentation performs better than clustered- based segmentation to detect the tumour with low segmentation error and minimal loss of information.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Signal and Imaging Systems Engineering (IJSISE):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com