Matrix completion-based prediction analysis in carbon emissions Online publication date: Wed, 31-Mar-2021
by Wei Huang; Danqing Wei; Cheng Wang; Chongze Lin
International Journal of Embedded Systems (IJES), Vol. 14, No. 2, 2021
Abstract: China's carbon emissions data at this stage are mainly concentrated at the provincial and national levels. As a major area for the implementation of carbon emission reduction measures, cities have not had a complete carbon inventory for a long time due to the lack of basic data. In order to solve this problem, this paper constructs a set of prefecture-level CO2 emission forecasting methods to study the carbon emissions of 11 urban areas in Zhejiang Province. The two-dimensional matrix is formed by one-to-one correspondence between city and time. Through the analysis of the historical data of carbon emissions, the intrinsic relationship is found, and the missing data is predicted by the method of matrix completion. Experiments show that compared with Zhejiang's actual carbon emissions statistics data, the difference is found to be within 1%, and can achieve 69.3% higher than the latest method.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Embedded Systems (IJES):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com