Service component recommendation based on LSTM Online publication date: Wed, 31-Mar-2021
by Xiao Yang; Hong Xu; Hongping Shu; Yaqiang Wang; Kui Liu; Yuan Ho
International Journal of Embedded Systems (IJES), Vol. 14, No. 2, 2021
Abstract: Service component selection is a core problem in software development process. With an enormous number of components available, it is often difficult for the developer to select the most appropriate one, as he or she might not be aware of all the possible business scenes ahead of time. Taking these challenges into consideration, we propose a deep learning-based system that automatically recommends service components based on component selection history during the software development process. We employ a sequential model with two long short-term memory (LSTM) layers and two fully connected layers, using SoftMax as an activation function, to predict the next service component. The model was trained, validated and tested on dataset with more than 120,000 examples from a real-world software company. The proposed network outperforms the baseline methods in terms of the evaluation criteria. In addition, the model results were deployed in a real-world software tool and gave positive feedback.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Embedded Systems (IJES):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com