Predicting re-admission to hospital for diabetes treatment: a machine learning solution Online publication date: Wed, 31-Mar-2021
by Satish M. Srinivasan; Yok-Fong Paat; Philmore Halls; Ruth Kalule; Thomas E. Harvey
International Journal of Computational Biology and Drug Design (IJCBDD), Vol. 13, No. 5/6, 2020
Abstract: Predictive analytics embrace an extensive range of techniques for identifying patterns within data to predict future outcomes and trends. The objective of this study is to design and implement a predictive analytics system that can be used to forecast the likelihood that a diabetic patient will be readmitted to the hospital. Using the Diabetes 130-US hospitals dataset we modelled the relationship between the patient re-admission (predictor) and the response variable using the Random Forest classifier. We obtained a maximum AUC of 0.684 and an F1 Score of 52.07%. Our study reveals that attributes such as number of inpatient visits, discharge disposition, admission type, and number of laboratory tests are strong predictors for the re-admission of patients. Findings from this study can help hospitals design suitable protocols to ensure that patients with a higher probability of re-admission are recovering well and possibly reduce the risk of future re-admission.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Computational Biology and Drug Design (IJCBDD):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com