A design of experiment based procedure for real-time forecasting
by Shankar Vinay Arul, Angappa Gunasekaran, SP. Nachiappan, V. Naganathan
International Journal of Industrial and Systems Engineering (IJISE), Vol. 2, No. 1, 2007

Abstract: Time series methods base their forecasts on extrapolations from past patterns and inter-relationships. Consequently, they work well only when the future is similar to the past or when changes (by chance) happen to cancel out; they are also quite handicapped when it comes to the consideration of environmental factors. In a turbulent environment with high uncertainty, the need for accurate forecasts is paramount. Hence, this paper proposes a design-approach, which incorporates the principles of Design of Experiments (DOE) into the real-time forecasting model, such as causal methods, to minimise the standard error. DOE is employed to select the most significant factors while forming the causal equation and further to perfect the coefficients of these factors. A pilot study data has been used to validate the proposed model.

Online publication date: Thu, 30-Nov-2006

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Industrial and Systems Engineering (IJISE):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com