An integrated data mining approach to predict electrical energy consumption
by Alireza Fallahpour; Kaveh Barri; Kuan Yew Wong; Pengcheng Jiao; Amir H. Alavi
International Journal of Bio-Inspired Computation (IJBIC), Vol. 17, No. 3, 2021

Abstract: This study proposes an integrated adaptive neuro fuzzy inference system (ANFIS) and gene expression programming (GEP) approach to predict long-term electrical energy consumption. The developed hybrid method uses ANFIS to find parameters with maximum effect on the electricity demand. Thereafter, the GEP algorithm is deployed to derive a robust mathematical model for the prediction of the electricity demand. Various statistical criteria are considered to verify the validity of the model. The predictions made by the ANFIS-GEP model are compared with those obtained by the simple GEP and hybrid artificial neural network (ANN)-ANFIS methods. The proposed ANFIS-GEP technique is more computationally efficient and accurate than GEP, and notably outperforms ANFIS-ANN.

Online publication date: Mon, 10-May-2021

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Bio-Inspired Computation (IJBIC):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com