In-belt vibration monitoring of conveyor belt idler bearings by using wavelet package decomposition and artificial intelligence Online publication date: Tue, 11-May-2021
by Willem Abraham Roos; Philippus Stephan Heyns
International Journal of Mining and Mineral Engineering (IJMME), Vol. 12, No. 1, 2021
Abstract: Visual and acoustic methods are commonly used to identify faulty or failing idler bearings but these methods can become tedious and time consuming in practice. While vibration monitoring might look like an obvious choice to explore, the instrumentation of individual idler bearings would be prohibitively expensive. The potential for using an accelerometer that moves with the belt while tracking the condition of all bearings encountered along the way is therefore potentially interesting. This possibility is explored in this work on a laboratory scale test rig. Wavelet package decomposition is used to extract the bearing features and present it to an artificial neural network and support vector machine to identify and classify faulty idler bearings. The system could not only identify faulty bearings but also classify the faults accurately.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Mining and Mineral Engineering (IJMME):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com