Role of machine learning and big data in healthcare for the prediction of epidemic diseases: a survey Online publication date: Mon, 07-Jun-2021
by S. Sharma; Yogesh Kumar Gupta
International Journal of Engineering Systems Modelling and Simulation (IJESMS), Vol. 12, No. 2/3, 2021
Abstract: Epidemic diseases are the contagious or infectious diseases which are possible to be spread into the entire country, and are defined as an outbreak that occurs and affects an exceptionally high proportion of the population. However, these infectious ailments if controlled beforehand by using trending technologies for the early prediction would not turn into mortality situations. With this view, this paper is summarising the research work by using machine learning and big data handling techniques for the early prediction of epidemic diseases. The epidemic diseases especially covered in this review are influenza, malaria and dengue ailment. The diseases are compared against machine learning models used and input data contemplated. An observation for the prediction of diseases found that same factors associated with searching techniques give different results for different locations; overall searches are showing diversity and dearth in data. Moreover, dearth of data will mitigate the accuracy.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Engineering Systems Modelling and Simulation (IJESMS):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com