A new model predictive torque control strategy for permanent magnet synchronous hub motor of EVs Online publication date: Wed, 07-Jul-2021
by Long Chen; Hao Xu; Xiaodong Sun
International Journal of Vehicle Performance (IJVP), Vol. 7, No. 3/4, 2021
Abstract: This paper presents an optimal control strategy for a permanent magnet synchronous hub motor (PMSHM) of EVs drive using three voltage vectors. First, in order to simultaneously control torque and flux excellently, three voltage vectors including two active vectors and one zero voltage vector are selected. Second, the duration of the three voltage vectors in one period is calculated by the principle of simultaneous deadbeat control of torque and flux. Moreover, the cost function which eliminates the weight coefficient is proposed to reduce the amount of calculation. Finally, the proposed method is compared with the one- and two-vector-based model predictive torque control (MPTC) methods both in simulation and experiment. It is found that the proposed threevector-based MPTC can obtain better performance such as smaller torque ripple and current total harmonic distortion (THD) both in steady and dynamic state.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Vehicle Performance (IJVP):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com