A hybrid feature selection algorithm for big data dimensionality reduction Online publication date: Wed, 21-Jul-2021
by M.D. Anto Praveena; B. Bharathi
International Journal of Advanced Intelligence Paradigms (IJAIP), Vol. 19, No. 3/4, 2021
Abstract: Data dimensionality causes problems like large storage requirements due to data redundancy, noisy data visualisation and high computational cost in analytical processes. Hence, reduction of high data dimension data set is the vital task in big data analytics. Feature selection is a dimensionality reduction approach that targets to reduce the high data dimensions into l subset by attaining a set of uncorrelated principal variables based on key features from the data source by eliminating redundant, noisy features and irrelevant. In the proposed work, ant colony optimisation (ACO) and quick branch and bound (QBB) based hybrid algorithm for feature selection is presented to improve the efficiency of feature selection in big data analytics. ACO was implemented for feature selection by observing real ants in their search of their food resources. QBB algorithm is used to partition the large data set into two partitions initially. These two algorithms are combined and implemented to reduce the data dimensionality based on feature selection approach. This algorithm was simulated and compared against existing feature selection algorithms in terms of a set of performance metrics such as precision, recall, F-score, classification accuracy, size of selected feature and proved the efficacy of proposed hybrid algorithm.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Advanced Intelligence Paradigms (IJAIP):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com