A prediction model of shallow groundwater pollution based on deep convolution neural network
by Zhongfeng Jiang; Hongbin Gao; Li Wu; Yanan Li; Bifeng Cui
International Journal of Environmental Technology and Management (IJETM), Vol. 24, No. 3/4, 2021

Abstract: In order to solve the problems that the shallow groundwater pollution is affected by water quality in the prediction process, resulting in the low prediction index and water quality index of shallow groundwater pollution, a prediction model of shallow groundwater pollution based on deep convolution neural network is proposed. The index system of shallow groundwater pollution is constructed, and contents of dissolved oxygen, oxygen demand, ammonia nitrogen and pH in shallow groundwater are determined. With the help of gradient descent method and Guss-Newton method, the weight of index content is modified; the modified content value of pollution index is entered into the depth convolution neural network for optimisation, and the optimised value is obtained to complete the shallow groundwater pollution prediction model. The experimental results show that the maximum prediction index of shallow groundwater pollution is about 0.99, and the maximum value of water quality index is close to 1.

Online publication date: Tue, 03-Aug-2021

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Environmental Technology and Management (IJETM):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com