A hybrid approach for preserving privacy for real estate data
by Parmod Kalia; Divya Bansal; Sanjeev Sofat
International Journal of Information and Computer Security (IJICS), Vol. 15, No. 4, 2021

Abstract: In the present digital world, usage of the internet has increased many folds as users have become dependent on the cloud-based applications. The disclosure of personal information on such platforms becomes a prospective threat for an attack. Researchers have used randomised data distortion technique with addition of random noise to conceal the sensitive data from an unauthorised adversary. This perturbation technique has relevance for the numerical datasets only. In this paper, we propose a hybrid model of two phases encoding with additive random noise value for ensuring non-disclosure of private and sensitive information and maintaining an effective balance between data privacy and data utility. The proposed technique has been tested on different data sizes of the real estate industry in terms of efficiency and effectiveness in preserving privacy and data utility. The proposed algorithm has been evaluated in terms of privacy level and information loss. It has proved effective in comparison with other privacy-preserving techniques such as perturbation and encryption in terms of space complexity and efficiency.

Online publication date: Mon, 09-Aug-2021

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Information and Computer Security (IJICS):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com