MGWHD-SVM: maximum weighted heteroscedastic migration learning algorithm Online publication date: Tue, 12-Oct-2021
by Min Zhang; Lianguang Mo
International Journal of Computing Science and Mathematics (IJCSM), Vol. 14, No. 1, 2021
Abstract: Maximum mean discrepancy (MMD) is a global measure of the distribution differences between domains at present, as a standard for effectively measuring the distribution differences between source and destination domains, however, MMD has some shortcomings in measuring the local structure and distribution differences between fields. This paper proposes a new measure: maximum local weighted heteroscedasticity discrepancy (MLWHD), this measure not only fully considers the local structure and distribution differences among fields, but also shows good adaptability to the exception points and noise, further, MLWHD was used to determine the maximum global weighted heteroscedasticity discrepancy (MGWHD), and MGWHD was embedded into the training of support vector machine (SVM). Finally, the test shows that the MGWHD method has better robustness.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Computing Science and Mathematics (IJCSM):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com