Fretting behaviour of textured Ti-6Al-4V alloy under oil lubrication Online publication date: Fri, 15-Oct-2021
by Wenhui Cao; Tianchang Hu; Hengzhong Fan; Qi Ding; Litian Hu
International Journal of Surface Science and Engineering (IJSURFSE), Vol. 15, No. 3, 2021
Abstract: The micro-textures with different dimples densities and diameters are prepared on the Ti-6Al-4V surfaces. The influences of surface texture parameters on the fretting wear behaviours of TC4 self-matching pair have been investigated by using a pin-on-disk machine in a reciprocating sliding mode under different applied loads and fretting frequencies at oil lubrication. Results indicated that the proper texture on titanium alloy can greatly improve the fretting tribological properties under different loads. The 10% texture density surface showed the minimum wear volume at a low fretting frequency, whereas the 20% texture density surface had the lowest wear volume at a high fretting frequency. Under the tested condition, the surface with dimple diameter of 50 μm had the best anti-fretting wear performance under the applied fretting frequencies. In addition, the mechanisms for friction-reducing and anti-wear were discussed. The existence of surface texture promoted the transition from dry friction to boundary lubrication state under high fretting frequency, and the dimples can effectively capture wear debris to alleviate the abrasive wear of the material.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Surface Science and Engineering (IJSURFSE):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com