Frost forecast - a practice of machine learning from data Online publication date: Sat, 30-Oct-2021
by Liya Ding; Yosuke Tamura; Kosuke Noborio; Kazuki Shibuya
International Journal of Reasoning-based Intelligent Systems (IJRIS), Vol. 13, No. 4, 2021
Abstract: Among the efforts in frost forecast using machine learning techniques, a well-adopted method is to first apply time series forecast for the lowest temperature at future time points, such as the next a few days, and then apply predictive model to predict the event of frost at these time points using corresponding temperature forecasted. According to the domain understanding, there exists some 'cause-effect' between environment factors, including temperature and others, and the occurrence of frost in a few hours' period. A new modelling concept has been proposed by Ding et al. to capture such cause-effect. Preliminary experiments showed encouraging results with a sample of minute-level sensor data collected in Ikuta campus of Meiji University. In this article, as a continuation of the work, we shall further discuss methods of modelling, including causal models and associative models, and propose a framework of hybrid system in supporting frost forecast of short-term (e.g., a few hours) as well as that of relatively longer periods (e.g., a few days). More experiments are provided, and the issues of performance evaluation are discussed.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Reasoning-based Intelligent Systems (IJRIS):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com