Study on network security intrusion target detection method in big data environment
by Jia Chen; Yingkai Miao
International Journal of Internet Protocol Technology (IJIPT), Vol. 14, No. 4, 2021

Abstract: In view of the traditional network security intrusion target detection method cannot effectively estimate the trend of the intrusion target, resulting in poor detection accuracy, a new network security intrusion target detection method under the big data environment is proposed. Set up under the environment of big data sequence model of network intrusion in the invasion of the information collected from different data centre, according to the binary feature of syntax tree for the intrusion information decomposition, the invasion of the target and get the feature sequences, with closed frequent search method, combining with the characteristics of sequence invasion of target extraction, using path, trends of binary weighted semantic of intrusion path direction get trend path set, exception path is obtained by covariance correction model trend estimation results, achieve network security intrusion detection. The experimental results show that this method has a better performance and better stability in the estimation of intrusion target path trend, with an estimated accuracy of between 94.9% and 98.6% and a detection time of 0.24-0.38 s.

Online publication date: Mon, 15-Nov-2021

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Internet Protocol Technology (IJIPT):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com