Salient object detection using semantic segmentation technique
by Bashir Ghariba; Mohamed S. Shehata; Peter McGuire
International Journal of Computational Vision and Robotics (IJCVR), Vol. 12, No. 1, 2022

Abstract: Salient object detection (SOD) is the operation of detecting and segmenting a salient object in a natural scene. Several studies have examined various state-of-the-art machine learning approaches for SOD. In particular, deep convolutional neural networks (CNNs) are commonly applied for SOD because of their powerful feature extraction abilities. In this paper, we investigate the semantic segmentation capability of several well-known pre-trained models, including FCNs, VGGs, ResNets, MobileNet-v2, Xception and InceptionResNet-v2. These models have been trained over an ImageNet dataset, fine-tuned on a MSRA-10K dataset and evaluated using other public datasets, such as ECSSD, MSRA-B, DUTS and THUR15k. The results illustrate the superiority of ResNet50 and ResNet18, which have mean absolute errors (MAE) of approximately 0.93 and 0.92, respectively, compared to other well-known FCN models. Moreover, the most robust model against noise is ResNet50, whereas VGG-16 is the most sensitive, relative to other state-of-the-art models.

Online publication date: Tue, 30-Nov-2021

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Computational Vision and Robotics (IJCVR):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com