DNS of wake from perforated plates: aspect ratio effects
by Abhinav Singh; Vagesh D. Narasimhamurthy
Progress in Computational Fluid Dynamics, An International Journal (PCFD), Vol. 21, No. 6, 2021

Abstract: Flow over a perforated plate is studied at Reynolds number 250. Effect of the plate aspect-ratio L/d (where, L is length and d is width) is studied by varying L from 1d-12d. Hydrodynamic forces on the plate and the shedding-frequency match for all the cases, though the wake-dynamics is distinct between the lower and upper L/d cases. In the low L/d cases, wake is coherent along the span and has reduced three-dimensionality. Flow here is undergoing wake-transition, where the wavelength of the secondary instability is about 1d. Further, jets from the perforation holes exhibit in-phase oscillation. Another feature is the presence of energetic sub-harmonics, where the wake is experiencing period-doubling bifurcations. In high L/d cases, wake exhibits higher incoherence due to vortex-dislocations and incoherent jet oscillations, which promotes flow three-dimensionality. Present study indicates that an L/d of about six is required for the simulations to be free from numerical effects.

Online publication date: Tue, 30-Nov-2021

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the Progress in Computational Fluid Dynamics, An International Journal (PCFD):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com