Load torque estimation for an automotive electric rear axle drive by means of virtual sensing using Kalman filtering
by Robert Kalcher; Katrin Ellermann; Gerald Kelz
International Journal of Vehicle Performance (IJVP), Vol. 8, No. 1, 2022

Abstract: Load torque signal information in hybrid or battery electric vehicles would be beneficial for control applications, extended diagnosis or load spectrum acquisition. Due to the high cost of the sensor equipment and because of the inaccuracies of state-of-the-art estimation methods, however, there is currently a lack of accurate load torque signals available in series production vehicles. In response to this, this work presents a novel model-based load torque estimation method using Kalman filtering for an electric rear axle drive. The method implements virtual sensing by using measured twist motions of the electric rear axle drive housing and appropriate simulation models within a reduced-order unscented Kalman filter. The proposed method is numerically validated with help of sophisticated multibody simulation models, where influences of hysteresis, torque dynamics, road excitations and several driving manoeuvres such as acceleration and braking are analysed.

Online publication date: Sun, 05-Dec-2021

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Vehicle Performance (IJVP):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com