An evaluation dataset for depression detection in Arabic social media
by Somaia Elimam; Mohamed Bougeussa
International Journal of Knowledge Engineering and Data Mining (IJKEDM), Vol. 7, No. 1/2, 2021

Abstract: Studying depression in Arabic social media has been neglected compared to other languages and the traditional way of dealing with depression (face-to-face medical diagnose) is not enough as the number of people that suffer from depression in Arabic communities increased dramatically. This paper proposes the first dataset to detect depressed users in Arabic social media. We pondered tweets from Twitter, pre-processed and converted it to a structured format. A notable advantage of the elaborated dataset is that it allows effective evaluation of machine learning algorithms for depression detection. We employ several classification algorithms such as deep neural network, logistic regression, multinomial Naïve Bayes, Bernoulli Naïve Bayes, AdaBoost, passive aggressive, nearest centroid, and linear SVC. The F-score, AUC, precision, and accuracy scores were selected as performance measures to compare algorithms, and the result showed that it is very challenging to classify Arabic tweets especially with the sparse nature of Twitter data.

Online publication date: Wed, 22-Dec-2021

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Knowledge Engineering and Data Mining (IJKEDM):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com