A fuzzy logic and ontology-based approach for improving the CV and job offer matching in recruitment process
by Amine Habous; El Habib Nfaoui
International Journal of Metadata, Semantics and Ontologies (IJMSO), Vol. 15, No. 2, 2021

Abstract: The recruitment process is a critical activity for every organisation, and it allows to find the appropriate candidate for a job offer and its employer work criteria. The competitive nature of the recruitment environment makes the task of hiring new employees very hard for companies due to the high number of CV (resume) and profiles to process, the personal job interests, the customised requirements and precise skills requested by employees, etc. The time becomes crucial for recruiters' choices; consequently, it might impact the selection process quality. In this paper, we propose a retrieval system for automating the matching process between the candidate CV and the job offer. It is designed based on Natural Language Processing, machine learning and fuzzy logic to handle the matching between the job description and the CV. It also considers the proficiency level for the technology skills. Moreover, it offers an estimation of the overall CV/job offer expertise level. In that way, it overcomes the under-qualification and over-qualification issues in the ICT (Information and Communication Technologies) recruitment process. Experimental results on a ground-truth data of a recruiter company demonstrate that our proposal provides effective results.

Online publication date: Thu, 13-Jan-2022

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Metadata, Semantics and Ontologies (IJMSO):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com