Predicting sexual offenders using exhaustive CHAID techniques on victim's age
by Bhajneet Kaur; Laxmi Ahuja; Vinay Kumar
International Journal of Applied Management Science (IJAMS), Vol. 14, No. 1, 2022

Abstract: Sexual offences can spoil the whole culture of the society. This research paper proposes two decision models to classify and predict the sexual offenders of minor and major victims on the basis of their physical attributes namely age, race, weight and height using CHAID and Exhaustive CHAID techniques of decision tree. Overall dataset has been divided into 70:30 for building and testing the models. As resulted 79.8% rate of accuracy found by model using CHAID technique even model tested with 79.1% rate of accuracy. By using Exhaustive CHAID, 79.9% rate of accuracy depicts by the model developed through 70% of test data and model validated through 30% of test data with 78.8% rate of accuracy. The proposed models can help to take any kind of decision further by police departments, sexual harassment cells and law enforcement agencies for security purposes.

Online publication date: Wed, 23-Feb-2022

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Applied Management Science (IJAMS):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com