Early prediction of diabetes mellitus using various artificial intelligence techniques: a technological review
by Shahid Mohammad Ganie; Majid Bashir Malik; Tasleem Arif
International Journal of Business Intelligence and Systems Engineering (IJBISE), Vol. 1, No. 4, 2021

Abstract: Millions of people around the globe are suffering from diabetes. Most of the patients (diabetic or potentially diabetic) are not familiar with their health issues and the risk factor they face before the diagnosis of diabetes. The paper reviews substantial work related to diabetes mellitus based on different classification techniques. In this paper, a generic smart framework for realistic health management of diabetes mellitus is presented and implemented using a publically available Pima Indian diabetes dataset sourced from the UCI machine learning repository. Different classification algorithms were employed namely decision tree (DT), random forest (RF), eXtreme gradient boosting (XGB), AdaBoost (AB) and gradient boosting classifier (GBC). Pre-processing techniques have been employed to improve the data quality assessment. Among all the classifiers, GB outperformed other models with accuracy rate of 92.20% followed by RF, XGB, ADB and DT as 91.55%, 89.61%, 89.61% and 88.96%, respectively.

Online publication date: Tue, 10-May-2022

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Business Intelligence and Systems Engineering (IJBISE):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com