Defect detection through customised reduction and hybrid convolution classification over super-pixel clusters Online publication date: Mon, 13-Jun-2022
by Matthew Immanuel Samson; Hossam A. Gabbar
International Journal of Reasoning-based Intelligent Systems (IJRIS), Vol. 14, No. 1, 2022
Abstract: Defect detection is the process of locating defects or anomalies within an object that include changes in textures, features, patterns, missing part, along with other object modifications. The paper discusses some of the main challenges of defect detection including details on sample selection, object orientation, semantic segmentation and image defect classification. This paper focuses on applying modified machine and deep learning models to analyse defects with wide object invariance. We demonstrate algorithms that perform multi-class classification with improvements in the image segmentation process that directly connect to the deep model architecture. Before applying learning algorithms, the paper also demonstrates the value of sample selection together with a more simplified normalised dimension reduction based on image downscaling even before using the convolution operation of the convolutional neural networks (CNN).
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Reasoning-based Intelligent Systems (IJRIS):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com