Feature extraction modelling of enterprise innovation behaviour data based on morphological gradient
by Shibiao Mu
International Journal of Information Technology and Management (IJITM), Vol. 21, No. 2/3, 2022

Abstract: Aiming at the problem of slow speed and low accuracy of traditional feature extraction model for enterprise behaviour data, a feature extraction model for enterprise innovation behaviour data based on morphological gradient is constructed. The model is divided into two parts: the virtual method is used to integrate the data of enterprise innovation behaviour, and the data are synthesised and filtered; the morphological gradient operator is used to extract the features of the integrated data of enterprise innovation behaviour. The simulation results show that using the proposed model to extract the characteristics of enterprise innovation behaviour data, the extraction process only takes 15.68 min, and the average extraction accuracy can reach 96.68%. This result is much better than the three traditional models and achieves the expected goal.

Online publication date: Mon, 20-Jun-2022

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Information Technology and Management (IJITM):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com