Numerical study using an implicit finite difference scheme of a high velocity flow crossing a non-prismatic hydraulic structure – case of symmetrical gradual expansion Online publication date: Thu, 28-Jul-2022
by Ali Berreksi; Tahar Ikni; Saâdia Benmamar; Lyes Amara; Samir Hamchaoui; Abbas Benzerra; Boualem Remini
International Journal of Hydrology Science and Technology (IJHST), Vol. 14, No. 2, 2022
Abstract: The objective of the present research work is the numerical simulation of a supercritical flow through a non-prismatic channel. The unsteady flow is governed by the 2D Saint Venant equations. These equations are discretised using the Beam and Warming implicit finite difference scheme. The elaborated numerical model is tested in the case of a symmetrical gradual expansion. First, the aim is to determine the shape of the water surface along the solid wall and the median axis for a weak bottom slope. Subsequently, the study is generalised for steeply sloping channels. The obtained results in the first application show that there are no significant disturbances in the water surface, which did not lead to the appearance of the rather dangerous transverse waves. In the second one, it was observed that by increasing the bottom slope the flow does not extend laterally towards the walls because their divergence is very gradual.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Hydrology Science and Technology (IJHST):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com