Hotspot extraction method of multimedia network public opinion based on neural network Online publication date: Mon, 12-Sep-2022
by Mi Tian
International Journal of Web Based Communities (IJWBC), Vol. 18, No. 3/4, 2022
Abstract: In order to overcome the problems of traditional methods, such as poor accuracy of hotspot extraction and poor information recall rate, this paper proposes a method of hotspot extraction of multimedia network public opinion based on neural network. The hot information of multimedia network public opinion in Weibo database is collected by association rules, and the redundant information of multimedia network public opinion hotspot is denoised. Relief algorithm is used to realise the relevant feature screening of public opinion hot information, and the neural network structure is used to calculate the weight threshold of public opinion words to construct the feature target extraction function of public opinion hotspots, so as to realise the multimedia network public opinion hotspots extraction. The results show that the method presented in this paper can improve the accuracy of hotspot information extraction and reduce the CPU consumption during extraction.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Web Based Communities (IJWBC):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com