GRAPES: semi-automatic approach for forecasting models to predict GameStop prices using cloud computing and machine learning
by Tan Van Vo; Sukhpal Singh Gill
International Journal of Grid and Utility Computing (IJGUC), Vol. 13, No. 5, 2022

Abstract: Since the Covid-19 pandemic, we have seen a surge of retail investors that now can easily trade anywhere in the world with just a Smartphone. Social media groups like Reddit's WallStreetBets have almost put a few hedge funds close to bankruptcy by driving GameStop share prices to the sky. In this work, we propose a framework called GRAPES which uses Cloud Computing and Machine Learning to explore various forecasting techniques in predicting GameStop prices. In addition to this, this work also provides light insight into semi-automating forecasting models using tools such as Google Cloud Platform (GCP), Airflow and Streamlit. Moreover, we monitored the investment funds from Ark Invest to provide additional insight into the market in general. Overall, the paper shows the Autoregressive Moving Average (ARMA) model gives the best accuracy based on the Mean Absolute Percentage Error (MAPE) of 1.12%. This means the predictive model is out with an average of 1.12% from the actual price.

Online publication date: Fri, 14-Oct-2022

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Grid and Utility Computing (IJGUC):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com