Irregularities recognition system for automotive pieces
by Ignacio Algredo-Badillo; Germàn Portillo-García; Kelsey A. Ramírez-Gutiérrez; Luis A. Morales-Rosales
International Journal of Computational Vision and Robotics (IJCVR), Vol. 12, No. 6, 2022

Abstract: The automotive industry is a growing sector in Mexico that requires many production processes. One of the most important is auto parts manufacturing with high-quality standards to avoid economic losses. Hence, the failure detection of pieces must be carried out in the early process, discarding those that do not reach the desired quality. This paper deals with an object recognition system to automatically find failures in circular automotive pieces. This is an open problem in the automobile assembly process to guarantee product quality. We detect imperfections (above 3.5 mm) on small pieces, such as scratches and dents on edges, by using an image processing stage, where no training is included, with a low-cost camera. The average processing time to detect failures is 2.7 seconds, which allows us to examine more pieces in a short time compared with other works and with manual inspections carried out by human experts. The proposed system reaches an accuracy of 98% and is implemented in the LabVIEW tool.

Online publication date: Thu, 27-Oct-2022

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Computational Vision and Robotics (IJCVR):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com