Wind adaptive urban seafront buildings design for improving urban ventilation and pedestrian wind comfort in Mediterranean climate Online publication date: Tue, 01-Nov-2022
by Hakan Bas; Ilknur Turkseven Dogrusoy; Sigrid Reiter
International Journal of Global Warming (IJGW), Vol. 28, No. 3, 2022
Abstract: Coastal cities in the Mediterranean region have cool sea breezes that can reduce the effects of global warming, urban heat islands (UHI), and air pollution. However, in many coastal cities, impermeable urban seafront buildings prevent cool sea breezes from penetrating the city while at the same time posing a risk of pedestrian wind discomfort. This study aims to design wind-adaptive urban seafront buildings that improve urban ventilation and pedestrian wind comfort in Izmir, a high-density Mediterranean city, using the parametric design and computational fluid dynamics (CFD) method. Alternative seafront buildings consisting of two-rows and shifted configurations were designed using the two proposed urban geometric indicators. The authors found that the denser and more compact seafront building configuration can prevent the risk of wind discomfort and achieves the highest ventilation efficiency (82%). The findings apply to similar coastal urban environments and help urban policymakers and designers.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Global Warming (IJGW):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com