Dynamic acquisition method of a user's implicit information demand based on association rule mining Online publication date: Mon, 05-Dec-2022
by Xiang Li
International Journal of Autonomous and Adaptive Communications Systems (IJAACS), Vol. 15, No. 4, 2022
Abstract: In order to overcome the problems of low precision and poor recall in the current research results of user demand mining, a dynamic method based on association rule mining is proposed. Using association rules to get user behaviour-related data, analysing user behaviour through the crawler system, using different association strategies according to different businesses, combining user browsing time with a user interest attenuation factor to calculate user interest, and building a user dynamic interest model. Based on the analysis of user interest, in the initial stage of mining, support and trust are input, respectively, and an association rule mining algorithm is called to realise the dynamic mining of user implicit information demand. The experimental results show that the mining accuracy and recall rate of this method are higher than 95%, and the whole method has strong scalability and practicality.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Autonomous and Adaptive Communications Systems (IJAACS):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com