An evaluation model of e-commerce credit information based on social big data Online publication date: Tue, 06-Dec-2022
by Yun Zhang
International Journal of Autonomous and Adaptive Communications Systems (IJAACS), Vol. 15, No. 4, 2022
Abstract: To overcome the problems of low accuracy and poor stability in the evaluation of Internet trading activities, an evaluation model of e-commerce credit information based on social big data is proposed. The model will be composed of four layers: basic data layer, synthetic data layer, random model layer and integrated learning layer. The logical structure of the model is divided into social communication big data preprocessing, credit evaluation submodel establishment, evaluation submodel integration, so as to enhance the ability of the credit division model. On this basis, the credit evaluation index system is established, and the e-commerce credit information is evaluated by the BP neural network method. The results of model verification show that the model has good generalisation ability and accuracy, can distinguish important variables effectively and stably, can acquire the e-commerce credit situation more scientifically, and can control the security situation of e-commerce credit information in the social big data environment.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Autonomous and Adaptive Communications Systems (IJAACS):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com