Targeted sentiment classification with multi-attention network
by Xiao Tian; Peiyu Liu; Zhenfang Zhu
International Journal of Wireless and Mobile Computing (IJWMC), Vol. 23, No. 3/4, 2022

Abstract: Targeted sentiment classification aims at recognising the sentiment polarity of specific targets. However, existing methods mainly depend on a crude attention mechanism, while neglecting the mutual effects between target and context. In order to solve this problem, this paper introduces a Multi-Attention Network (MAN) for aspect level sentiment classification. We jointly modelled intra-level and inter-level attentional components to capture the interaction between target and context. The former attention mechanism pays attention to the context relation, whereas the latter attention mechanism considers important parts in a sentence. The experimental conducted on laptop, restaurant and Twitter data sets indicate that our model surpasses the baseline model.

Online publication date: Mon, 12-Dec-2022

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Wireless and Mobile Computing (IJWMC):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com