Salp swarm optimisation with deep transfer learning enabled retinal fundus image classification model
by Indresh Kumar Gupta; Abha Choubey; Siddhartha Choubey
International Journal of Networking and Virtual Organisations (IJNVO), Vol. 27, No. 2, 2022

Abstract: Automated screening and diagnostic process in the healthcare sector improves services, reduces cost and labour. With the developments of machine learning (ML) and deep learning (DL) models, intelligent disease diagnosis models can be designed. Retinal fundus image classification using DL models becomes essential for the identification and classification of distinct retinal diseases. This article develops a salp swarm optimisation with deep transfer learning enabled retinal fundus image classification (SSODTL-RFIC) model. The proposed SSODTL-RFIC model examines the retinal fundus image for the existence of diseases. In addition, a median filtering (MF) approach is employed for the noise removal process and graph cut (GC) segmentation is applied. Besides, MobileNetv1 feature extractor is involved to produce feature vectors. Finally, SSO with cascade forward neural network (CFNN) model is applied for recognition and classification process. A widespread experimentation process is performed on benchmark datasets to examine the enhanced performance of the SSODTL-RFIC model, an extensive comparative examination pointed out the supremacy of the SSODTL-RFIC model over the recent approaches with maximum accuracy of 98.71% and 99.12% on the test ARIA and STARE datasets respectively.

Online publication date: Mon, 12-Dec-2022

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Networking and Virtual Organisations (IJNVO):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com