Evolutionary optimisation with outlier detection-based deep learning model for biomedical data classification Online publication date: Mon, 12-Dec-2022
by R. Raja; B. Ashok
International Journal of Networking and Virtual Organisations (IJNVO), Vol. 27, No. 2, 2022
Abstract: In recent times, large amount of medical data is being generated by various sources such as test reports, medications, etc. Due to the recent advances of machine learning (ML) and deep learning (DL) models, medical data classification (MDC) remains a crucial process in the healthcare sector. This study introduces a new hyperparameter tuned convolutional neural network-recurrent neural network (HPT-CNN-RNN) model for medical data classification. The proposed HPT-CNN-RNN model includes pre-processing step to transform the actual healthcare data into useful format. Besides, SVM-SMOTE approach was executed to handle the class imbalance problems. In addition, outlier detection process is performed using extreme gradient boosting (XGBoost) model. Moreover, bacterial foraging optimisation algorithm (BFOA) with CNNRNN model is employed to categorise medical data. Furthermore, the BFOA is utilised to optimally choose the hyperparameter values of the CNNRNN model. The experimental outcomes designated the better performance of the HPT-CNN-RNN model over the other methods.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Networking and Virtual Organisations (IJNVO):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com