

European J. of Industrial Engineering

ISSN online: 1751-5262 - ISSN print: 1751-5254
https://www.inderscience.com/ejie

Solving airline crew pairing problems through constraint
partitioning

Maryam Radman, Kourosh Eshghi

DOI: 10.1504/EJIE.2023.10044607

Article History:
Received: 08 May 2020
Accepted: 29 December 2021
Published online: 15 December 2022

Powered by TCPDF (www.tcpdf.org)

Copyright © 2023 Inderscience Enterprises Ltd.

https://www.inderscience.com/jhome.php?jcode=ejie
https://dx.doi.org/10.1504/EJIE.2023.10044607
http://www.tcpdf.org

 European J. Industrial Engineering, Vol. 17, No. 1, 2023 29

 Copyright © 2023 Inderscience Enterprises Ltd.

Solving airline crew pairing problems through
constraint partitioning

Maryam Radman* and Kourosh Eshghi
Department of Industrial Engineering,
Sharif University of Technology,
Tehran, Iran
Email: maryam.radman@ymail.com
Email: eshghi@sharif.edu
*Corresponding author

Abstract: In this paper, a decomposition technique based on constraint
partitioning is developed to solve the crew pairing problem (CPP) which has an
overriding importance in the airline industry as it determines the crew cost. The
method is based on the observation that in large-scale problems, the constraints
can be partitioned to some sub-problems which involve special subsets of
variables. The resultant structure is called the ‘partitioned structure’. Therefore,
in the proposed method, first, a feasible solution is generated for a reduced CPP
with a ‘partitioned structure’ through the optimal solutions of its sub-problems.
Then, at each step, the feasible solution is improved through adding/removing
some pairings to/from it. The proposed algorithm is applied to a case study
from the literature as well as some randomly generated test problems. One
advantage of the proposed method is finding multiple feasible solutions with
lower time than the method used to solve the case. [Submitted: 8 May 2020;
Accepted: 29 December 2021]

Keywords: crew pairing problems; CPPs; constraint partitioning;
decomposition technique; sub-problem; airline industry.

Reference to this paper should be made as follows: Radman, M. and
Eshghi, K. (2023) ‘Solving airline crew pairing problems through constraint
partitioning’, European J. Industrial Engineering, Vol. 17, No. 1, pp.29–59.

Biographical notes: Maryam Radman obtained her PhD in Industrial
Engineering from the Sharif University of Technology, Tehran, Iran in 2021.
Her research interests include mathematical programming, discrete
optimisation, decomposition algorithms and queuing theory. She has published
several peer-reviewed papers in reputed international journals in recent years.

Kourosh Eshghi is a Professor in the Department of Industrial Engineering at
the Sharif University of Technology. He received his PhD in Mathematical
Modelling form University of Toronto in 1997. His interests include graph
theory, mathematical programming, meta-heuristic algorithms, decision theory,
and disaster management. He is the author of five textbooks and has published
over one hundred academic papers in national and international journals and
conferences.

 30 M. Radman and K. Eshghi

1 Introduction

There are various optimisation problems in the airline industry. As shown in Figure 1,
these problems are broken down into planning and operational. The planning problems
are further broken down into flight planning problems containing flight scheduling, fleet
assignment and aircraft routing problems and crew scheduling problems containing crew
pairing and crew assignment problems (CAPs). The operational problems are also sub-
divided into revenue management, gate assignment and irregular operations problems.
These issues are interrelated such that the output of one problem is the input of another
problem (Deveci and Demirel, 2018a, 2018b).

Figure 1 Classification of optimisation problems in the airline industry

The crew scheduling problem is one of the main problems, constituting one of the biggest
costs for an airline company, which is composed of the crew pairing problem (CPP) and
the CAP. In the former, the minimal-cost pairings which cover all the scheduled flights of
the airline companies are generated, while in the latter, the crews are assigned to the
generated pairings. The main part of the crew cost is related to the CPP, while CAP aims
at increasing the level of equality in the crew’s schedule. The fiercely competitive airline
market has further brought to the fore the importance of working out an acceptable
solution to this problem.

In this paper, the CPP is modelled as a set covering problem (SCP) and a new
decomposition technique based on constraint partitioning is developed to solve it. The
proposed method is based on the observation that in real-world large-scale problems,
each constraint does not involve all variables of the problem; but the constraints can be
partitioned to some sub-problems which involve special subsets of variables (Kato and
Sakawa, 2003; Elfeky, 2009). The resultant structure is called the ‘partitioned structure’.
As shown in Figure 2, this structure is simply obtained by partitioning the similar
constraints of the problem in the same sub-problems. Therefore, each two sub-problems
may have variables in common with each other.

In this paper, first, a framework is proposed to generate a feasible solution to an SCP
with a ‘partitioned structure’, using the optimal solutions of its sub-problems. Since in
this method, the original problem is solved through the smaller sub-problems containing
fewer variables and constraints, its complexity diminishes. Then, the proposed
framework is extended to solve a CPP. The proposed method starts from an initial set of
feasible pairings which cover all the scheduled flights. Then, after partitioning the
constraints of the problem, the feasible solution of the ‘partitioned structure’ is
calculated. Afterwards, at each iteration, some of the pairings of the current solution are
removed from the problem and the new pairings are added to the problem such that this
feasible solution is strictly improved. There are two sub-problems in the proposed

 Solving airline crew pairing problems through constraint partitioning 31

method which form the basis for the addition and removal of the pairings. The removal
sub-problem is a knapsack model which determines the pairings that should be removed.
The addition sub-problem aims to generate new pairings in order to improve the feasible
solution of the ‘partitioned structure’. In addition, the implementation of the proposed
algorithm is simplified when the knapsack problem is solved by a greedy method. The
details of the proposed algorithm are explained in Sections 3 and 4.

Figure 2 The ‘partitioned structure’ of the problem

Notes: The constraints and the variables of the problem are represented in the rows and
the columns of the matrix, respectively. Each two sub-problems may involve
common variables.

The results of applying the proposed algorithm to a case study in Section 5 testify to its
strengths vis-à-vis the previous method used to solve the case.

The method proposed in this paper, which is based on constraint partitioning, is novel
and original as it has never been studied in the literature before. In addition, the
application of the clustering methods to group the similar constraints in the same
sub-problems can be considered another contribution of this study.

The performance of the proposed algorithm is evaluated on a case study, whose data
was available in the literature of CPPs as well as on some randomly-generated test
problems, involving up to 320 flights. The main advantages of the proposed algorithm
vis-à-vis the previous method for the case study are the generation of various final
solutions and the lower solution time.

The paper is organised as follows. The literature review of solving CPPs is presented
in Section 2. In Section 3, the theoretical framework of the paper is presented. Section 4
explains the proposed algorithm. The experimental results are reported in Section 5.
Finally, the concluding remarks are presented in Section 6.

2 Problem settings and discussion of related work

2.1 Problem definition

Before defining the problem, some terminological explanation should be in order. The
time between two consecutive flights is called the connection time. A sequence of flights
that start and end at the crew base (also called home base) is called a pairing. If the crew
of a pairing attend as passengers at a flight in order to transport to the start city of another

 32 M. Radman and K. Eshghi

flight or return to the home base, that flight is called a deadhead flight for them.
Deadhead flights are not desirable for airline companies as they put a strain on the
capacity of the flight for passengers and on crew utilisation. If a pairing satisfies the rules
set by airline companies, labour unions and the government, it is called a feasible pairing.
These rules set standards for the duration of pairings, total flight time (FT) of pairings,
minimum and maximum connection time, etc.

The CPP aims to generate the minimal-cost subset of feasible pairings which cover all
flights of the airline company. The CPP can be modelled as a set covering or partitioning
problem. The set covering model of a CPP is as follows (Zeren and Özkol, 2016):

min j j
j

c x (1)

1ij j
j

a x i F≥ ∀ ∈ (2)

{0, 1}jx j P∈ ∀ ∈ (3)

In the above model, F and P denote the set of flights and feasible parings, respectively. In
this model, aij is a parameter which gets value 1 if flight i is covered by pairing j. If the jth
pairing is chosen, xj gets value 1 and 0 otherwise. Equation (1) calculates the cost of
pairings and equation (2) guarantees that each flight is covered by at least one pairing. If
the right-hand side of equation (2) is equal to one for all flights, the set partitioning model
of the CPP is obtained; otherwise, the flights for which equation (2) is satisfied as (>1)
are deadhead flights.

2.2 Solution methods

An appropriate solution to this problem can reduce the operating costs of the crew and,
consequently, accrue more profits for airline companies. Since the crew cost is one of the
biggest costs (making up about 20% of the total cost), second only to the fuel cost, any
shrinkage in this cost, however slight, can ultimately end up saving millions of dollars for
airline companies (Wu et al., 2016).

The numbers of pairings are usually about 200,000 for small CPPs, about one billion
for medium-sized ones and several billions for large-scale CPPs (Klabjan et al., 2001).
Therefore, it is impossible to generate all feasible pairings in a CPP. As late as the early
1990s, heuristics were used to solve CPPs which gave way to the use of mathematical
optimisation techniques (Kasirzadeh et al., 2017). Generally speaking, two types of
techniques are used to solve this problem:

1 The first technique consists of two phases: pairing generation and optimisation. In
the former, a large amount of feasible pairings are generated. In the latter, an
optimisation set covering or partitioning problem is solved in order to choose the
optimal subset of pairings generated in the first phase to cover all flights. This
technique is called offline column generation. The optimisation problem in the
second phase can be solved using exact or heuristic methods.

2 The second technique is the most commonly used technique in the CPP literature
whereby the phase of pairing generation is simultaneously solved with the
optimisation phase. This technique is called dynamic column generation or, in short,

 Solving airline crew pairing problems through constraint partitioning 33

column generation. Column generation is used to solve problems containing a large
number of variables in such a way that it is not possible to generate all of them. It
guarantees the optimal solution of the linear programming (LP) relaxation model of
the problem. In each step of this method, a new variable is generated and added to
the LP relaxed problem, leading to the strict improvement of its optimal solution. For
a detailed description of the method, see Wu et al. (2016).

AhmadBeygi et al. (2009), Aksoy (2010), Dück et al. (2011), Rasmussen et al. (2011),
Reisi and Moslehi (2013), Saddoune et al. (2013), Zeren and Özkol (2016), Wu et al.
(2016) and Kasirzadeh et al. (2017) are examples of studies having applied the column
generation method to solve the CPP problem.

In Klabjan et al. (2001), first, the LP relaxation model of the problem is solved using
column generation then, some pairings with the best reduced cost are chosen for the
second phase where a branch and bound method is applied to find the minimal-cost
subset of pairings. Kornilakis and Stamatopoulos (2002) and Zeren and Özkol (2012)
have developed offline column generation techniques using genetic algorithms for the
optimisation phase.

In Aydemir-Karadag et al. (2013), three methods have been developed to solve the
CPP. In the first method, some feasible pairings are generated using a heuristic method;
then, their minimal-cost subset is chosen using CPLEX. In the second method, following
the generation of the initial feasible pairings, a genetic algorithm is implemented to
improve them; finally, CPLEX is applied to choose their minimal-cost subset. Column
generation has been used as the third method whose initial pairings are the output of the
two previous methods.

To solve the CPP, Erdoğan et al. (2015) have used a metaheuristic algorithm based on
a neighbourhood search method to construct the pairings and have then applied an
optimisation-driven heuristic, employing these pairings to solve a set partitioning
problem to select their best possible subset.

Agustín et al. (2016) proposed a metaheuristic method based on biased randomisation
to solve the CPP. In Demirel and Deveci (2017), a dynamic genetic algorithm has been
developed where the length of the chromosome changes dynamically in each iteration
and consequently in the optimisation run. In this method, after generating all legal
parings, subsets of them are chosen. Then, this subset dynamically changes during the
algorithm by exchanging pairings between itself and the main set of pairings. In
Novianingsih and Hadianti (2018), a two-phase heuristic method is developed to solve
the CPP. In the first phase, a feasible solution is constructed based on a greedy method
which maximises the covered flights. In the second phase, the solution is improved in
such a way that it avoids local optimal solutions.

In Deveci and Demirel (2018b), an offline column generation technique is developed.
The depth-first search method is used for the pairing generation phase. For the
optimisation phase, three heuristics, containing two genetic algorithms and a memetic
algorithm, are used.

Aggarwal et al. (2018) proposed three modifications for pairing generation, namely

1 generating parallel pairing

2 improving the depth-first search method for generating legal pairings in the network
structure

 34 M. Radman and K. Eshghi

3 reducing the search space by filtering the generated legal pairings whose
corresponding cost indicator is greater than a given number.

Masipa (2019) developed two heuristic solutions for generating legal pairings based on
greedy and random tree searches, respectively. These approaches have also been adapted
for a stochastic environment where weather delays may occur.

Haouari et al. (2019) developed a new nonlinear formulation for CPPs that contains a
polynomial number of constraints and variables, compared to the exponential number of
variables (pairings) of their traditional set-covering or partitioning formulation. Then, the
proposed formulation is linearised using reformulation linearisation techniques.
Moreover, to improve the computational performance of the proposed formulation, two
enhancement strategies involving tightening the variable bounds and adding the valid
inequalities have been developed. Finally, it is shown that the resulting model can be
efficiently solved using commercial solvers (e.g., CPLEX) without complicated
algorithmic implementations.

Quesnel et al. (2020) introduced a new variant of the problem, called CPPs with
language constraints, to generate final pairings that are less violative of crew members’
language requirements. The proposed problem is modelled as a mixed-integer program,
solved by column generation, and shown to generate more suitable pairings than the
traditional CPP.

Aggarwal et al. (2020a) designed a framework, called airline crew pairing
optimisation framework, which consists of three parts:

1 legal crew pairing generator to generate the feasible pairings through a parallel
architecture

2 initial feasible solution generator to select a set of feasible pairings of the previous
part covering all flights in a reasonable time to initialise the next part

3 optimisation engine including linear and integer solution generator.

In addition, a sensitivity analysis of the proposed framework is performed on the cost
quality and running time of the initial feasible solution.

In Aggarwal et al. (2020c), the initial feasible solution generator of the previous paper
is explained in more details. This generator is a heuristic based on a divide-and-cover
strategy and integer programming. In the proposed heuristic, the flight set is decomposed
into smaller subsets. Then all legal pairings for each subset are generated, and a subset
with the minimum cost is selected from them. Finally, the pairing subsets with the
minimum cost are combined to form the initial feasible solution. In Aggarwal et al.
(2020e), a learning mechanism is developed to support the column generation algorithm
of the optimisation engine of Aggarwal et al. (2020a). This learning mechanism identifies
a set of critical flights using the available flight connection information to construct new
legal pairings of the pricing sub-problem. In Aggarwal et al. (2020b), the column
generation algorithm of the optimisation engine of Aggarwal et al. (2020a) is extended to
generate a lower-cost solution compared to a standard column generation algorithm. In
fact, in the pricing sub-problem of the proposed column generation heuristic, four
strategies are developed to prioritise the generation of pairings compared to the single
strategy of a standard column generation algorithm in which a pairing with the most
negative shadow price is generated.

 Solving airline crew pairing problems through constraint partitioning 35

Aggarwal et al. (2020d) proposed a genetic algorithm with improved initialisation
phase and genetic operators, vis-a-vis previous works, and compared its efficiency to a
column generation approach to solving CPPs.

Yaakoubi et al. (2020) proposed some improvements to a previously proposed
baseline algorithm for CPPs. The presented modifications are based on machine learning
techniques that cluster the flights with a high probability of being consecutive in a
solution. The improved algorithm was implemented in a commercial solver called
GENCOL-DCA. The new algorithm provides better results at a lower cost, which was
reduced by 8.25%.

Desaulniers et al. (2020) proposed a column generation algorithm for solving CPPs.
The important factor of this algorithm is using a dynamic constraint aggregation
technique that exploits the degeneracy of the master problem, resulting in the addition of
fewer constraints to it. The performance of the combined column generation is compared
to that of a standard column generation algorithm.

3 Theoretical framework

In this section, first, a feasible solution is generated for an SCP with a ‘partitioned
structure’ through the optimal solutions of its sub-problems; then, the conditions of
adding a new variable to the SCP, which reduces the objective value of this feasible
solution, are obtained. As shown in Figure 2, the ‘partitioned structure’ of an SCP is
obtained by grouping its similar constraints into the same sub-problems. To illustrate this
point, consider Figure 3. In addition, more details about exploiting this structure is
explained in Subsection 5.1 (Partition_Alg).

Suppose P is an SCP with a ‘partitioned structure’ containing Q sub-problems. Pi
(∀i = 1, 2, …, Q) is the ith sub-problem of this structure and Vi and Consti(∀i = 1, 2, …,
Q) are the set of variables and constraints of Pi, respectively. The mathematical model of
sub-problem Pi(∀i = 1, 2, …, Q) is as follows:

: min
j i

i j jx V
P c x

∈ (4)

1
j

kj j ix
a x k Const≥ ∈ (5)

{0, 1}j j ix x V∈ ∀ ∈ (6)

As it can be seen, the structure of sub-problem Pi is similar to an SCP; therefore, any
existing algorithms for SCPs can also be used to solve Pi. In order to generate a feasible
solution for P through the optimal solutions of Pi(∀i = 1, 2, …, Q), a simple method is
proposed in Figure 4. In this method, n denotes the number of the variables of P.

Let us denote the solution obtained from the above method by Sf. Note that, since in
step 3, S is obtained by the union of sets *

1S to * ,QS therefore, each variable receives the
maximum value generated by *

1S to *
QS for it. Therefore Sf is feasible for sub-problems

P1 to PQ and, consequently, problem P. For instance, according to Figure 3, the optimal
sets for sub-problems P1 to P3 are *

1S = {x1, x2}, *
2S = {x4} and *

3S = {x3, x4},

 36 M. Radman and K. Eshghi

respectively. Therefore, Sf = {x1, x2, x3, x4}, which is obviously feasible for the whole
problem.

Figure 3 (a) An SCP (b) The ‘partitioned structure’ of the SCP obtained by grouping its similar
constraints into the same sub-problems (c) The sub-problems of the ‘partitioned
structure’

(a)

(b) (c)

It should be noted that the authors have shown, for 45 well-known instances from
OR-Library (http://people.brunel.ac.uk/~mastjjb/jeb/orlib/scpinfo.html) (problem sets 4,
5, 6, A, B, C and D), the percentage difference of feasible solution Sf from the optimal
value is 2.36% on average. In other words, through proper clustering of the constraints of
these instances, leading to the ‘partitioned structure’, the relative percentage difference is
2.36%, on average.

Figure 4 The steps of generating a feasible solution for an SCP with a ‘partitioned structure’
through the optimal solutions of its sub-problems

Step 1: Find the optimal solution of subproblem 𝑃𝑖 ሺ∀ 𝑖 = 1, … ,𝑄ሻ and define 𝑆𝑖∗ ሺ∀ 𝑖 = 1, … ,𝑄ሻ
 as the set of variables with value 1.
Step 2: Calculate 𝑆 = 𝑆1∗ ∪ 𝑆2∗ ∪ …∪ 𝑆𝑄∗ .
Step 3: If 𝑥𝑗 ∈ 𝑆, ሺ∀ 𝑗 = 1, … ,𝑛ሻ, it gets value 1 and 0 otherwise.

In what follows, the effect of adding a new variable to problem P on feasible solution Sf
is examined. Suppose that P(n) denotes problem P with n variables whose constraints are
partitioned to Q sub-problems P1(n) to PQ(n). The optimal solution of P(n) is represented
by S*(n) and its feasible solution generated by the above method is shown by Sf(n).

Now, suppose that new variable xn+1 is added to P(n). According to the steps of
Figure 4, we have the following equation for the new problem P(n + 1).

*

1

(1) (1)
Q

f
i

i

S n S n
=

+ = + (7)

 Solving airline crew pairing problems through constraint partitioning 37

Suppose that vij is the binary value assigned to variable xj(∀j = 1, …, n + 1) by *
iS (n + 1)

(∀i = 1, …, Q). According to equation (7), we have:

() ()
1

1
1

(1) max , ,
n

f
j j Qj

j

f S n c v v
+

=

+ =  (8)

Now, we look for the conditions on new variable xn+1, so that by its entrance to problem
P(n), f(Sf(n + 1)) gets a value less than f(Sf(n)). Therefore, we have:

() () () ()
1

1
1

(1) () max , , ()
n

f f f
j j Qj

j

f S n f S n c v v f S n
+

=

+ <  <  (9)

We assume f(Sf(n)) = A and max(v1j, …, vQj) = zj. Therefore, equation (9) equals:
1

1

n

j j
j

c z A
+

=

< (10)

Obviously, the new variable xn+1 should get value 1 by at least one of *
iS (n + 1) (∀i = 1,

…, Q); otherwise f(Sf(n + 1)) = f(Sf(n)) and equation (10) is not satisfied. In addition, it is
assumed that cn+1 is known. Therefore, equation (10) equals:

1 1
1 1

n n

j j n j j n
j j

c z c A c z A c+ +
= =

+ <  < −  (11)

In the above equation, A and cn+1 are parameters and zj(∀j = 1, …, n) is a variable. In
order to find the best value for each zj(∀j = 1, …, n), we can consider an objective

function in the form
1

max
n

j jj
w z

= in which wj(∀j = 1, …, n) is the objective

coefficient of zj (the reason for considering this form for the objective function is
explained later). Consequently, the following optimisation problem is obtained:

1

max
n

j j
j

w z
=


s.t.

1
1

{0, 1} 1, ,

n

j j n
j

j

c z A c

z j n

+
=

< −

= ∀ =




 (12)

Model (12) is a knapsack problem. After solving the above model:

Assumption 1: If zj = 1 (∀j = 1, …, n), then max(v1j, …, vQj) = 1. As a result, xj should be
the member of at least one of optimal solutions *

1S (n + 1) to *
QS (n + 1).

Assumption 2: If zj = 0 (∀j = 1, …, n), then max(v1j, …, vQj) = 0. As a result, xj should not
be present in any of the optimal solutions *

1S (n + 1) to *
QS (n + 1).

 38 M. Radman and K. Eshghi

Note that our goal is to satisfy 11

n
j j nj

c z A c +=
< − in equation (12), so only the results

of the second assumption are significant. To understand why that is the case, assume that
after solving model (12), zl = 1, (l = 1, …, n), but xl is not a member of any *

iS (n + 1), ∀j
= 1, …, Q. Therefore, zl equals zero and cl is reduced from the left-hand side of

11
,

n
j j nj

c z A c +=
< − implying that it still remains satisfied. In addition, according to

this result, the reason for considering the maximisation form for the objective function of
model (12) is that variables zj(∀j = 1, …, n) get value one as far as possible; therefore, the
results of the second condition need not to be considered in the problem.

We define X0 = {xj|zj = 0 in the solution of model (12)}, then according to the second
assumption, the members of X0 should get value zero in the optimal solutions of all
sub-problems Pi(n + 1), ∀i = 1, …, Q. Therefore, they can be temporarily removed from
problem P(n + 1), because they have no effect on the optimal solutions of the
sub-problems. Since variables X0 are present in some of the constraints of P(n + 1), their
removal from the problem results in two cases:

• Case 1: Some constraints with no variables are created.

• Case 2: All constraints contain at least one variable.

The interpretation of the first case in a CPP is that a number of flights are not covered if
pairings X0 are removed from the problem. In this case, we consider F0 as the set of
uncovered flights. The members of F0 give insights about producing the coefficient
column of the new variable xn+1. Consequently, the new variable xn+1 should satisfy the
two following conditions in order to improve feasible solution Sf:

• Condition 1: The cost of xn+1 should be less than the pre-considered value cn+1.

• Condition 2: The coefficient column of xn+1 should cover flights F0.

In the second case, all flights are still covered if pairings X0 are removed from the
problem. Therefore, a new feasible solution for the CPP is obtained, whose objective
function is less than A – cn+1 according to equation (12).

A noteworthy point here is that airline companies have special rules for generating
their pairings. As a result, one may not satisfy the above two conditions by generating
only one pairing according to these rules. For instance, airline companies place a cap on
the number of flights of a pairing. Therefore, if |F0| or the number of the members of the
coefficient column of xn+1 is more than this limited value, one feasible pairing alone
cannot satisfy the second condition.

Therefore, in the following, the effect of adding more than one new variable, i.e., h
variables, to problem P(n) is examined. As in the case of adding one new variable, we
have the following equations:

() () () ()1
1

() () max , , ()
n h

f f f
j j Qj

j

f S n h f S n c v v f S n
+

=

+ <  <  (13)

1

n h

j j
j

c z A
+

=

< (14)

 Solving airline crew pairing problems through constraint partitioning 39

In a similar way to the process of adding one new variable, zn+l = 1 (∀l = 1, …, h). In

addition, we assume
1

.
h

n ll
C c +=

= Therefore, equation (14) equals:

1

n

j j
j

c z A C
=

< − (15)

Consequently, the following knapsack model is obtained:

1

max
n

j j
j

w z
=


s.t.

1

{0, 1} 1, ,

n

j j
j

j

c z A C

z j n
=

< −

= ∀ =




 (16)

As it can be seen, the above knapsack model for more than one variable is the same as
model (12) for one variable. As a result, when adding several new variables, their
conditions for improving the feasible solution Sf are as follows:

• Condition 1: The sum of the costs of xn+l = 1 (∀l = 1, …, h) should be less than C.

• Condition 2: Each member of F0 should be covered by at least one of the coefficient
columns of xn+l = 1 (∀l = 1, …, h).

4 The proposed algorithm

In this section, first, the proposed algorithm to solve a CPP is explained; then, the
implementation of the proposed algorithm is simplified when the knapsack problem (16)
is solved by a greedy method.

In general, the proposed algorithm starts from an initial set of feasible pairings which
cover all the scheduled flights. Then, after partitioning the constraints of the problem, the
feasible solution Sf is calculated. At each iteration of the algorithm, first the removal
sub-problem, which is the Knapsack model (16), is solved to determine the set of
pairings, X0, to be removed from the problem. By removing X0, the set of uncovered
flights by the remaining pairings, F0, is identified. Then, a problem called the addition
sub-problem, which seeks to generate one or more pairings with a certain cost limit, Ch,
to cover F0, is solved. The process is repeated until the termination condition is satisfied.
The flowchart of the proposed algorithm is shown in Figure 5.

According to the algorithm explained in Figure 5, first, an initial feasible solution is
generated for the CPP, using the Initial_Pairings_Alg. The initial pairings are put in P(n).
Then, using the Partition_Alg, the constraints of P(n) are grouped based on their
similarity to each other, and the ‘partitioned structure’ is produced. The number of
sub-problems in this structure is considered as Q.

Next, once pairings X0 have been removed, the Q sub-problems are simultaneously
solved and feasible solution Sf is generated by the union of these Q solutions as described

 40 M. Radman and K. Eshghi

in Figure 4. As in generating Sf, the SCP is solved through the smaller sub-problems
containing fewer variables and constraints, its complexity diminishes. The objective
value of Sf determines parameter A in the knapsack model (16). In addition, the pairings
which generate Sf are considered the new pairings of problem P. Note that at the
beginning of the algorithm, X0 = ∅, and after solving the knapsack problem for the first
time, it is initialised. Parameter C in the knapsack problem is calculated as the average of
the costs of the n pairings.

Figure 5 The flowchart of the proposed algorithm to solve a CPP based on constraint partitioning

No

Generate initial feasible pairings using Initial_Pairings_Alg. Consider 𝑛 as the number of the pairings.

Start

Partition the constraints of 𝑃ሺ𝑛ሻ using Partition_ Alg. Consider 𝑄 as the number of the sub-problems.

Remove variables 𝑋଴ from 𝑃ሺ𝑛ሻ. Calculate 𝑆௙ሺ𝑛 െ |𝑋଴|ሻ and consider its objective value as 𝐴.

Remove variables 𝑋଴ from 𝑃ሺ𝑛ሻ and calculate 𝐹଴ as the uncovered flights.

𝐹଴ = ∅ ?

Is the cost of the feasible pairings less than 𝐶?

Consider ℎ as the number of the new feasible pairings and 𝑛 ൅ ℎ → 𝑛. Add the new feasible pairings to problem 𝑃ሺ𝑛ሻ.
Is the termination condition satisfied?

Yes

Yes

End

Calculate the new 𝐶 as the
sum of the costs of the
new feasible pairings.

No

No

Remove variables 𝑋଴ from 𝑃ሺ𝑛ሻ and calculate 𝑆௙ሺ𝑛 െ |𝑋଴|ሻ.

Produce the coefficient column 𝑌 with value 1 in the cells corresponding to the flights 𝐹଴.

Yes

Produce feasible pairings to cover 𝑌, using Conditioned Pairings Alg.

Consider the initial value of 𝐶 as the average of the costs of 𝑛 pairings.

 Calculate a feasible solution for the knapsack model (16) and put 𝑋଴ = ൛𝑥௝ห𝑧௝ = 0ൟ.

Refresh the pairings as the ones contributing to produce 𝑆𝑓and 𝑛 as their number.

 Solving airline crew pairing problems through constraint partitioning 41

In the next step, a feasible solution to the knapsack model is calculated and then,
X0 = {xj|zj = 0 in the solution of model (16)} is formed. By removing pairings X0 from
P(n), F0, which consist of the uncovered flights, is calculated. If F0 = ∅, a new feasible
solution for the CPP with the objective value less than A – C is obtained. Therefore, we
return to the step of removing X0 and calculating Sf(n – |X0|). If F0 ≠ ∅, binary coefficient
column Y with values one for the flights F0 is formed.

By specifying

1 the maximum sum of the costs of the new pairings, C

2 the flights to be covered by them, Y, Conditioned_Pairings_Alg is used to generate
new feasible pairings with the purpose of covering Y with the lowest possible cost.

If the sum of the costs of the newly-generated pairings is less than C, they are added to
P(n) and again the process is repeated for P(n + h). Otherwise, C is reset as the costs of
the new pairings in the knapsack problem. If the termination condition is satisfied, the
final feasible solution Sf is calculated.

The steps involved in the three algorithms, i.e., Initial_Pairings_Alg, Partition_Alg
and Conditioned_Pairings_Alg, in addition to some details regarding the implementation
of the proposed algorithm including the termination condition and the algorithm used to
solve the knapsack problem are explained in Section 5.

A simpler implementation of the proposed algorithm is also available since knapsack
model (16) can be solved by a greedy method. It is shown in Section 5 that this new
implementation of the algorithm can significantly reduce the solution time of the
proposed algorithm.

In the greedy method to solve knapsack model (16), the variables are sorted in a
descending order based on values wj/cj (∀j = 1, …, n). If the sorted variables are
displayed by z[j] (∀j = 1, …, n), then, until [] ,jj

z A C< − the variables get value 1.

The details of this classic method are explained in Dantzig (1957). Assume in the resulted
solution, X1 and X0 denote the set of the variables with value 1 and 0, respectively,
therefore, we have:

{ } { }

1 1

[] [] [] []
1 1 1 1

1 [1] [1] 0 []

if

, , ,

n n n n

j j j j
j j j j

n n

c A C c A c C A c

X z z X z

− −

= = = =

−

< − ≤ = − ≤ < −

 = =

   


 (17)

Similarly, we have:

{ } { }

{ } { }
{ }

1 2

[] [] 1 [1] [2] 0 [1] []
1 1

[1] [2] [1] 1 [1] 0 [2] []

[1] 1 0 [1] [2] []

if , , , ,

if , , ,
if , , , ,

n n

j j n n n
j j

n

n

A c C A c X z z X z z

A c c C A c X z X z z
A c C A X X z z z

− −

− −
= =

′

− ≤ < −  = =

− − ≤ < −  = =
− ≤ <  = ∅ =

  





 (18)

In the above equations, it is assumed that []1
.

k
j kj

A c L
=

− = The new implementation of

the proposed algorithm is displayed in Figure 6. The main idea behind the second version

 42 M. Radman and K. Eshghi

of the proposed algorithm is to perform a sensitivity analysis on the right-hand side value
of the constraint of knapsack model (16). In fact, in the first version of the algorithm,
changing C only affects this value, and the other components of the model remain
unchanged. Therefore, it is possible to calculate the resulting changes in the current
solution by performing a sensitivity analysis and without resolving the knapsack model,
using equations (17) and (18).

According to Figure 6, the first four steps of this flowchart are similar to the previous
version in Figure 5. In the fifth step, using the Initial_Pairings_Alg, some feasible
pairings to cover all flights are generated, which are denoted by FP. Then, based on the
results of equations (17) and (18), the initial member of X0 is z[n] which should be
removed from P(n) to calculate F0. Then an SCP is solved with pairings FP in order to
cover F0. The new pairings are considered new_P. If the sum of the costs of new_P is
between Ln and Ln–1, then a new feasible solution with the objective value less than A is
obtained. Otherwise, a new variable according to the ordering is added to X0(X0 = {z[n–1],
z[n]}) and the same procedure is repeated until the termination condition is satisfied.

5 Experimental results

Unfortunately, papers dealing with CPPs are often plagued with the lack of sample test
problems to compare the performance of various algorithms on them (Aydemir-Karadag
et al., 2013). In addition, the data of the case studies examined in the papers is private
(Demirel and Deveci, 2017). In the papers reviewed, only one paper presented the time
table of the scheduled flights of the airline company studied. Therefore, in order to
evaluate the performance of the proposed algorithm, the real case studied in Agustín et al.
(2016) is used in Subsection 5.1. In addition, larger instances with a similar structure to
the case are randomly generated and their experimental results are reported in
Subsection 5.2. In what follows, two versions of the proposed algorithm in Figures 5 and
6 are displayed by CPP_V1 and CPP_V2, respectively.

The proposed algorithm is coded in MATLAB and implemented on a computer with
2.27 GHz of CPU and 3 GB of RAM.

5.1 A case study

The case study of Agustín et al. (2016) consists of 41 flights on a five-day time horizon.
The rules of the related company are as follows:

1 The maximum daily flight time (DFT) of a pairing is eight hours.

2 The maximum days of a pairing is limited to three days.

3 The minimum connection time between two flights is 45 minutes.

4 The home base of the airline company is Madrid (MAD).

5 There is a deadheading possibility.

6 The days of a pairing must be consecutive.

7 The cost of a pairing is equal to its overall FT.

 Solving airline crew pairing problems through constraint partitioning 43

To view the details of the proposed algorithm for this case study and the time table of the
flights, see Agustín et al. (2016). In the following, first, the details of implementing the
proposed algorithm of this paper is explained; then, the experimental results are
compared with those of the study done by Agustín et al. (2016).

Figure 6 The flow chart of the simpler implementation of the proposed algorithm when the
knapsack model is solved by the greedy method of Dantzig (1957)

No

Generate initial feasible pairings using Initial_Pairings_Alg. Consider 𝑛 as the number of them.

Start

Partition the constraints of 𝑃ሺ𝑛ሻ using Partition_ Alg. Consider 𝑄 as the number of the subproblems.

Remove variables 𝑋଴ from 𝑃ሺ𝑛ሻ. Calculate 𝑆௙ሺ𝑛 െ |𝑋଴|ሻ and consider its objective value as 𝐴.

Consider 𝑋଴ = ሼ𝑧ሾ𝑖ሿ, … ,𝑧ሾ𝑛ሿሽ. Then, remove variables 𝑋଴ from 𝑃ሺ𝑛ሻ and calculate 𝐹଴.

𝐹଴ = ∅ ?

 𝐿௜ ≤ 𝑠𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑜𝑠𝑡𝑠 𝑜𝑓 𝑛𝑒𝑤_𝑃 ൏ 𝐿௜ିଵ? Is

Consider ℎ as the number of pairings 𝑛𝑒𝑤_𝑃 and put 𝑛 ൅ ℎ → 𝑛. Add 𝑛𝑒𝑤_𝑃 to 𝑃ሺ𝑛ሻ.
Is the termination condition satisfied?

Yes

Yes

End

Put 𝑖 = 𝑖 െ 1. No

No

Remove variables 𝑋଴ from 𝑃ሺ𝑛ሻ and calculate 𝑆௙ሺ𝑛 െ |𝑋଴|ሻ.

Solve a SCP with pairings 𝐹𝑃 to cover 𝐹଴. Consider 𝑛𝑒𝑤_𝑃 as the pairings of the solution.

Yes

Generate some feasible pairings denoted 𝐹𝑃 to cover all flights using Initial_Pairings_Alg.

Put 𝑖 = 𝑛.

Calculate 𝐿௜ and 𝐿௜ିଵ.

Refresh the pairings as the ones contributing to generate 𝑆𝑓and 𝑛 as their number.

 44 M. Radman and K. Eshghi

5.1.1 Initial_Pairings_Alg
For a better understanding of the steps involved this algorithm, which generates the initial
feasible pairings to start the algorithm, some definitions should be in order, as presented
in Table 1.
Table 1 The definitions of the terms used in the Initial_Pairings_Alg

Title Definition
PairingList The set of the feasible pairings generated by the algorithm
CurrentPairing The pairing under generation
FlightTime The total daily flight time of a pairing
CoveredFlights A vector with m elements. Its jth (∀j = 1,…,m) element gets value 1 if flight j

is covered by the pairings of PairingList
FlightList The flights which are not included in the CurrentPairing
CandidateList The list of the flights if added to the current pairing, which still remains

feasible

The steps involved in the algorithm are shown in Figure 7. As it can be seen, in the first
and second steps of the algorithm, the variables are initialised. The first step is repeated
once in the algorithm, while the second step is repeated when a new pairing is generated.
In the third step, a flight is randomly selected of CandidateList and is added to
CurrentPairing. In the next step, FlightTime is updated based on the time of the flight
added in the previous step. In step 5, if a feasible pairing is obtained, it is added to
PairingList and then CoveredFlights is updated in the next step. Otherwise, step 7 runs to
create a new CandidateList based on the rules of the airline company. If CandidateList
has no member, according to step 8, the generation of the current pairing stops and the
process of generating a new pairing starts. Otherwise, the generation of CurrentPairing
continues.

5.1.2 Conditioned_Pairings_Alg
This algorithm produces some pairings to cover a subset of flights, F0. This algorithm is
similar to Initial_Pairings_Alg with only one minor difference: CoveredFlights only
contains flights F0 in the first step. In addition, In order to increase the probability of the
coverage of flights F0, that is the goal of this algorithm, a greater chance, seven times, is
considered to choose F0 in the CandidateList than other flights.

5.1.3 Partition_Alg
In this algorithm, the ‘partitioned structure’ of the problem is generated. As mentioned
before, there are Q sub-problems in this structure that may have some variables in
common with each other. This structure is obtained simply by partitioning the similar
constraints of the problem into the same sub-problems. For this part, a clustering method
inspired by Omran et al. (2006) is used. Clustering methods group a set of objects such
that objects in the same group are similar to each other but dissimilar to those in the other
groups.

In the method proposed for this part, a PSO-based clustering method is used. In this
method, as shown in Figure 8, some constraints are first chosen as the initial centres of

 Solving airline crew pairing problems through constraint partitioning 45

the clusters. During the PSO iterations, the best cluster centres are selected. In each
iteration, by means of the Euclidean distance, the distance of each constraint from the
centres is calculated to assign it to the cluster with the smallest distance. In the last
iteration, the best cluster centres and the distribution of the constraints are determined.
With this clustering method, similar constraints that contain almost the same group of
variables are grouped to form the sub-problems.

Figure 7 The steps involved Initial_Pairing_Alg to produce the initial feasible pairings

Step 1: Put 𝑃𝑎𝑖𝑟𝑖𝑛𝑔𝐿𝑖𝑠𝑡 = ∅,𝐶𝑜𝑣𝑒𝑟𝑒𝑑𝐹𝑙𝑖𝑔ℎ𝑡𝑠 = ሾ0 … 0ሿ1×𝑚 .
Step 2: Put 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑖𝑟𝑖𝑛𝑔 = ∅, 𝐹𝑙𝑖𝑔ℎ𝑡𝑇𝑖𝑚𝑒 = 0,𝐹𝑙𝑖𝑔ℎ𝐿𝑖𝑠𝑡 = 𝑎𝑙𝑙 𝑓𝑙𝑖𝑔ℎ𝑡𝑠, 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝐿𝑖𝑠𝑡 = 𝑓𝑙𝑖𝑔ℎ𝑡𝑠 𝑤ℎ𝑜𝑠𝑒 𝑠𝑡𝑎𝑟𝑡 𝑐𝑖𝑡𝑦 𝑖𝑠 𝑡ℎ𝑒 ℎ𝑜𝑚𝑒 𝑏𝑎𝑠𝑒
Step 3: Select a flight randomly of 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝐿𝑖𝑠𝑡 and call it 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐹𝑙𝑖𝑔ℎ𝑡. Add it to 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑖𝑟𝑖𝑛𝑔 and
 remove it from 𝐹𝑙𝑖𝑔ℎ𝑡𝐿𝑖𝑠𝑡.
Step 4: Update 𝐹𝑙𝑖𝑔ℎ𝑡𝑇𝑖𝑚𝑒:

 If the days of the two last flights of 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑖𝑟𝑖𝑛𝑔 are the same, then: 𝐹𝑙𝑖𝑔ℎ𝑡𝑇𝑖𝑚𝑒 = 𝐹𝑙𝑖𝑔ℎ𝑡𝑇𝑖𝑚𝑒 + 𝑓𝑙𝑖𝑔ℎ𝑡 𝑡𝑖𝑚𝑒(𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐹𝑙𝑖𝑔ℎ𝑡)
 Otherwise, put 𝐹𝑙𝑖𝑔ℎ𝑡𝑇𝑖𝑚𝑒 = 0.

Step 5: If 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐹𝑙𝑖𝑔ℎ𝑡 ends at home base, add 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑖𝑟𝑖𝑛𝑔 to 𝑃𝑎𝑖𝑟𝑖𝑛𝑔𝐿𝑖𝑠𝑡 and move on to the next step.
 Otherwise, move on to step 7.
Step 6: Update 𝐶𝑜𝑣𝑒𝑟𝑒𝑑𝐹𝑙𝑖𝑔ℎ𝑡𝑠. If all flights are covered, stop. Otherwise; go to the next step.
Step 7: Creating 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝐿𝑖𝑠𝑡:
 For each flight 𝑗 in 𝐹𝑙𝑖𝑔ℎ𝑡𝐿𝑖𝑠𝑡:
 If (start city of flight 𝑗 is the same as finish city of 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐹𝑙𝑖𝑔ℎ𝑡)

If (the days of flight 𝑗 and 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐹𝑙𝑖𝑔ℎ𝑡 are the same) and
(𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒(𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐹𝑙𝑖𝑔ℎ𝑡, 𝑗) ≥ minimum connection time) and (𝐹𝑙𝑖𝑔ℎ𝑡𝑇𝑖𝑚𝑒+𝑓𝑙𝑖𝑔ℎ𝑡 𝑡𝑖𝑚𝑒(𝑗) ≤ maximum flight time, then add flight 𝑗 to 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝐿𝑖𝑠𝑡.
Else if the day of flight 𝑗 and the day of 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐹𝑙𝑖𝑔ℎ𝑡 are consecutive and the difference of that
is at most two days with the day of first flight of 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑖𝑟𝑖𝑛𝑔 , then add flight 𝑗 to 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝐿𝑖𝑠𝑡.

Step 8: If 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝐿𝑖𝑠𝑡 = ∅, go to step 2. Otherwise; go to step 3.

Figure 8 The flowchart of the Partition_Alg to form the partitioned structure of the problem

Yes Partitioned structure

Choose the initial cluster centres, which are
some randomly selected constraints.

Coefficient matrix
of the problem

Initial cluster
centres

Implement one PSO iteration

New cluster centres and
partitioning of the constraints

Is the stopping condition
satisfied?

No

Stop

 46 M. Radman and K. Eshghi

It is worth mentioning that the reason to choose this constraint partitioning algorithm is
its approach to automatically determine the appropriate number of sub-problems, so it is
not necessary to set it as an input parameter beforehand. More details about the
PSO-clustering algorithm can be found in Omran et al. (2006).

5.1.4 Other conditions of the algorithm
1 The knapsack problem in the proposed algorithm is solved by the greedy method of

Dantzig (1957), which was explained in Section 4.

2 The termination condition of CPP_V1 is considered as the infeasibility of the
knapsack problem, which happens when the right-hand side of its constraint (A – C)
gets less than zero. CPP_V2 stops when X0 contains all variables (or X1 = ∅). Note
that, other conditions such as the special number of iterations or solution time can
also be considered.

3 The coefficients of the variables in the objective function of the knapsack problem
(wj) is considered as the number of flights covered by them.

4 The final solution of the algorithm is improved using a neighbouring search method.
In each step of this method, two variables of Sf with the maximum value of index
wj/nj, where wj and nj are the coefficient of the objective function of xj and the
number of constraints which are just satisfied by xj, respectively, are found. Then, it
is checked whether they can be replaced by other variables which improve the value
of the objective function.

The solutions of the proposed algorithm, related to both versions, are shown in Table 2,
parts (a) to (d). In this table, the first and the second columns show the name and the days
of each pairing, respectively. The next five columns represent the flight sequence of each
pairing. The last two columns show the overall connection time and FT of the pairings in
each day, respectively. In addition, the deadheading flight of each solution is shown in a
darker format in the table of each part. The performance of the two versions is compared
in Subsection 5.2. Let us note that Table 2, part (a), is also the solution of Agustín et al.
(2016). By comparing the results of the proposed algorithm in this paper and those in the
paper authored by Agustín et al. (2016) on the case study, the following points should be
made:

1 The overall FT for all solutions in parts (a) to (d), which shows the cost of each
solution, is 4,060. In addition, they contain five pairings and one deadheading flight.

2 In addition to the solution of Agustín et al. (2016), which is shown in part (a), the
proposed algorithm produces three other alternative solutions with the same
properties (overall FT of 4,060 and five pairings). Airline companies are willing to
improve several indicators for the CPP, but using a multi-objective function for the
problem renders it too complex. Therefore, generating various final solutions with
the same objective value increases their flexibility to choose the one that better meets
their desired indicators.

3 The average solution time of the two versions of the proposed algorithm is 13.28 and
2.08 seconds, respectively. For the second version, the solution time is much better

 Solving airline crew pairing problems through constraint partitioning 47

than the time reported for the algorithm of Agustín et al. (2016), which was about 20
seconds.

4 As all solutions in parts (a) to (d) have the same overall FT, that is 4,060, and contain
five pairings and one deadheading flight, in order to compare these multiple
solutions, some indicators are defined in Table 3. As each pairing of a solution is
assigned to a flight crew, these indicators show the level of workload among the
crews. They measure the maximum value of flight numbers (FNs), daily flight
numbers (DFN), FT, DFT, time away from base (TAFB) and daily total time (DTT)
for the pairings of each solution. There is also another indicator that measures the
maximum value of the ratio of the daily connection time (DCT) between flights and
the DFT which is defined as DCT/DFT for the pairings of each solution. This
indicator is defined in order to ensure a balance between the total daily resting and
working time of the crews.

All these indicators are defined in such a way that the lower amount of them is more
desirable. According to Table 3, the solution of part (d) outperforms the other solutions.
Table 2 The solutions of the proposed algorithm, parts (a) to (d)

(a)

Pairing Day Flight sequence Connection
time

Flight
time

A 2 MAD-SCQ 0h00m 1h10m
3 SCQ-MAD MAD-BCN 6h45m 2h05m
4 BCN-ORY ORY-BCN BCN-MAD 2h15m 4h15m

B 3 MAD-BCN BCN-SCQ SCQ-BCN 3h30m 4h05m
4 BCN-FCO FCO-BCN BCN-MXP MXP-BCN 4h00m 6h35m
5 BCN-MUC MUC-MAD 0h45m 4h35m

C 3 MAD-BCN BCN-FCO FCO-BCN 2h00m 4h20m
4 BCN-MAD MAD-NCE NCE-MAD MAD-LPA 3h15m 7h15m
5 LPA-MAD MAD-FRA FRA-MAD 2h05m 7h30m

D 3 MAD-BCN BCN-BRU 1h00m 3h05m
4 BRU-MAD MAD-SCQ SCQ-MAD MAD-AMS 7h20m 6h55m
5 AMS-MAD 0h00m 2h25m

E 1 MAD-BCN BCN-FCO FCO-BCN 2h00m 4h20m
2 BCN-ORY ORY-BCN 0h50m 3h15m
3 BCN-PMI PMI-BCN BCN-MAD MAD-NCE NCE-MAD 3h25m 5h50m

(b)

Pairing Day Flight sequence Connection
time

Flight
time

A 3 MAD-BCN BCN-BRU 1h00m 3h05m
4 BRU-MAD MAD-SCQ SCQ-MAD MAD-AMS 7h20m 6h55m
5 AMS-MAD 0h00m 2h25m

Note: Part (a) is the solution of the algorithm developed by Agustín et al. (2016) as well.

 48 M. Radman and K. Eshghi

Table 2 The solutions of the proposed algorithm, parts (a) to (d) (continued)

(b)

Pairing Day Flight sequence Connection
time

Flight
time

B 3 MAD-BCN BCN-FCO FCO-BCN BCN-SCQ SCQ-BCN 4h40m 7h25m
4 BCN-MAD MAD-NCE NCE-MAD MAD-LPA 3h15m 7h15m
5 LPA-MAD MAD-FRA FRA-MAD 2h05m 7h30m

C 1 MAD-BCN BCN-FCO FCO-BCN 2h00m 4h20m
2 BCN-ORY ORY-BCN 0h50m 3h15m
3 BCN-PMI PMI-BCN BCN-MAD MAD-NCE NCE-MAD 3h25m 5h50m

D 3 MAD-BCN 0h00m 1h00m
4 BCN-FCO FCO-BCN BCN-MXP MXP-BCN 4h00m 6h35m
5 BCN-MUC MUC-MAD 0h45m 4h35m

E 2 MAD-SCQ 0h00m 1h10m
3 SCQ-MAD MAD-BCN 6h45m 2h05m
4 BCN-ORY ORY-BCN BCN-MAD 2h15m 4h15m

(c)

Pairing Day Flight sequence Connection
time

Flight
time

A 3 MAD-BCN BCN-BRU 1h00m 3h05m
4 BRU-MAD MAD-SCQ SCQ-MAD MAD-AMS 7h20m 6h55m
5 AMS-MAD 0h00m 2h25m

B 2 MAD-SCQ 0h00m 1h10m
3 SCQ-MAD MAD-BCN BCN-SCQ SCQ-BCN 5h45m 5h10m
4 BCN-ORY ORY-BCN BCN-MAD 2h15m 4h15m

C 3 MAD-BCN BCN-FCO FCO-BCN 2h00m 4h20m
4 BCN-MAD MAD-NCE NCE-MAD MAD-LPA 3h15m 7h15m
5 LPA-MAD MAD-FRA FRA-MAD 2h05m 7h30m

D 3 MAD-NCE NCE-MAD MAD-BCN 1h45m 4h25m
4 BCN-FCO FCO-BCN BCN-MXP MXP-BCN 4h00m 6h35m
5 BCN-MUC MUC-MAD 0h45m 4h35m

E 1 MAD-BCN BCN-FCO FCO-BCN 2h00m 4h20m
2 BCN-ORY ORY-BCN 3h15m 7h15m
3 BCN-PMI PMI-BCN BCN-MAD 1h15m 4h05m

(d)

Pairing Day Flight sequence Connection
time

Flight
time

A 2 MAD-SCQ 0h00m 1h10m
3 SCQ-MAD MAD-NCE NCE-MAD MAD-BCN 3h20m 5h30m
4 BCN-ORY ORY-BCN BCN-MAD 2h15m 4h15m

Note: Part (a) is the solution of the algorithm developed by Agustín et al. (2016) as well.

 Solving airline crew pairing problems through constraint partitioning 49

Table 2 The solutions of the proposed algorithm, parts (a) to (d) (continued)

(d)

Pairing Day Flight sequence Connection
time

Flight
time

B 3 MAD-BCN BCN-SCQ SCQ-BCN 3h30m 4h05m
4 BCN-MAD MAD-NCE NCE-MAD MAD-LPA 3h15m 7h15m
5 LPA-MAD MAD-FRA FRA-MAD 2h05m 7h30m

C 1 MAD-BCN BCN-FCO FCO-BCN 2h00m 4h20m
2 BCN-ORY ORY-BCN 3h15m 7h15m
3 BCN-PMI PMI-BCN BCN-MAD 1h15m 4h05m

D 3 MAD-BCN BCN-BRU 1h00m 3h05m
4 BRU-MAD MAD-SCQ SCQ-MAD MAD-AMS 7h20m 6h55m
5 AMS-MAD 0h00m 2h25m

E 3 MAD-BCN BCN-FCO FCO-BCN 2h00m 4h20m
4 BCN-FCO FCO-BCN BCN-MXP MXP-BCN 4h00m 6h35m
5 BCN-MUC MUC-MAD 0h45m 4h35m

Note: Part (a) is the solution of the algorithm developed by Agustín et al. (2016) as well.

Table 3 Values of the indicators to compare the solutions of the proposed algorithm in Table 2

 (a) (b) (c) (d)
Max FN of pairings 10 12 10 10
Max DFN of pairings 5 5 4 4
Max FT of pairings 19h5m 22h10m 19h5m 19h5m
Max DFT of pairings 7h30m 7h30m 7h30m 7h30m
Max TAFB of pairings 26h25m 32h10m 26h25m 25h35m
Max DTT of pairings 14h15m 14h15m 14h15m 14h15m
Max DCT/DFT 3.24 3.24 1.11 1.06

5.2 Results for randomly generated CPPs

In order to evaluate the performance of the proposed algorithm on CPPs with different
sizes, some randomly-generated test problems, whose structure is similar to the real case
of the previous section, are examined. These problems contain 22 to 320 flights.

5.2.1 The comparison of the two versions of the proposed algorithm
This section reports the computational results for the two versions of the proposed
algorithm, denoted by CPP_V1 and CPP_V2, respectively. To evaluate the efficiency of
the proposed algorithms, a case study of CPP, presented in Subsection 5.1, is modelled in
the appendix, and its optimal solutions for the problems is obtained by the commercial
solver CPLEX (version 12.6).

 50 M. Radman and K. Eshghi

Table 4 The comparison of the two versions of the proposed algorithm to solve CPPs with
different sizes

C
PL

EX

C

PP
_V

1

C
PP

_V
2

#F
lig

ht
s

O
ve

ra
ll

fli
gh

t
tim

e
#P

ai
rin

gs

So
lu

tio
n

tim
e

(s
)

O

ve
ra

ll
fli

gh
t

tim
e

#P
ai

rin
gs

#I

te
ra

tio
ns

So

lu
tio

n
tim

e
(s

)

O
ve

ra
ll

fli
gh

t
tim

e
#P

ai
rin

gs

#I
te

ra
tio

ns

So
lu

tio
n

tim
e

(s
)

22

1,
83

5*

7
5.

03

1,

83
5

7
1

2.
20

1,
83

5
7

1
1.

25

33

2,
55

5*

15

5.
06

2,
55

5
12

2

7.
37

2,
55

5
12

2

1.
37

41

4,

06
0*

7

7.
50

4,
06

0
5

2
13

.2
8

4,

06
0

5
2

2.
8

60

5,
38

0*

28

17
.4

2

5,
38

0
24

2

38
.6

9

5,
38

0
25

1

1.
84

69

6,

42
0*

32

22

.4
9

6,

42
0

25

4
10

1.
54

6,
42

0
25

4

3.
22

10

1
8,

68
0*

43

31

1.
00

8,
68

0
36

9

65
4.

96

8,

68
0

36

6
12

.5
6

10
3

8,
48

0*

44

30
.7

5

8,
48

0
36

4

28
2.

67

8,

48
0

36

3
26

.6
2

13
9

12
,0

85

63

TL

12

,0
85

56

7

2,
11

8.
47

12
,0

85

56

10

50
.9

8
14

7
17

,1
90

61

TL

17
,2

00

53

4
34

7.
22

17
,1

90

52

5
41

.0
1

16
8

14
,2

15
*

63

53
6.

50

14

,2
15

52

12

2,

45
8.

68

14

,2
15

53

12

75

.2
0

19
7

N
A

-

-

21
,8

50

74

19

TL

21

,8
50

74

15

27

3.
68

24

7
N

A

-
-

19

,0
70

99

6

TL

18

,4
95

81

24

72

3.
94

25

0
N

A

-
-

20

,3
65

10

7
13

TL

19
,7

30

88

39

1,
56

3.
02

25

1
N

A

-
-

28

,0
00

82

38

4,

16
2.

79

28

,0
00

83

11

31

8.
83

31

6
N

A

-
-

25

,4
10

13

8
8

TL

24

,0
80

10

7
36

2,

67
1.

34

32
0

N
A

-

-

42
,4

15

14
4

11

TL

40

,1
05

12

0
46

1,

73
7.

06

N
ot

es
: *

sh
ow

s o
pt

im
al

 so
lu

tio
n.

 ‘T
L’

 sh
ow

s t
he

 ti
m

e
lim

it
of

 tw
o

ho
ur

s.
‘N

A
’ s

ta
nd

s f
or

 n
ot

 a
va

ila
bl

e.

 Solving airline crew pairing problems through constraint partitioning 51

The results are presented in Table 4. In this table, the first column represents the number
of flights for each problem. Note that the CPP with 41 flights is the real case studied in
the previous section. Columns two through four, five through eight, and nine through 12
refer to the results obtained by CPLEX, CPP_V1, and CPP_V2, respectively. The
columns ‘overall FT’, ‘#Pairings’, and ‘solution time’ show the overall FT of the
resulting pairings, the number of final pairings, and the solution running time (in
seconds), respectively. As can be seen, the two versions of the proposed algorithm
perform almost equally in terms of overall FT and the number of final pairings for
problems up to 197 flights. The main difference between them is the solution time, which
is on average almost 26 times larger for CPP_V1 than for CPP_V2. For the remaining
problems, which include 197, 247, 250, 316, and 320 flights, a time limit (TL) of two
hours is considered because the running time of CPP_V1 takes too long, so the best
solution obtained during this time period is reported in the table. According to the table,
for these problems, on average, the objective values and the number of final pairings
generated by CPP_V1 are 4.40% and 23.20% larger than those of CPP_V2, respectively.

According to Table 4, we have also considered a TL of two hours for CPLEX. During
this period, CPLEX has generated optimal solutions of problems containing 22, 33, 41,
60, 69, 101, 103, and 168 flights, which are marked with * in the table. As can be seen,
both versions of the algorithm have also produced the optimal values.

For problems with 139 and 147 flights, CPLEX could not provide final optimal
solutions in two hours. In addition, for problems with 197 or more flights, CPLEX could
not solve the problem and even provide a feasible solution due to the large size of the
problems. These problems are marked not available (NA).

5.2.2 The effect of the initial feasible solution
In Table 4, the advantage of CPP_V2 vis-à-vis CPP_V1 is shown. Therefore, in what
follows, this version of the algorithm is used. In Table 5, the effect of the initial feasible
solution on the performance of the proposed algorithm is reported for the CPP with 103
flights. The first initial solution is obtained by the Initial_Pairings_Alg of Figure 7. The
second initial solution is generated by the depth first search (DFS) method until all flights
are covered. This method is explained in detail in Deveci and Demirel (2018b).
Table 5 The comparison of the effect of the initial feasible solution on the performance of the

proposed algorithm to solve the CPP with 103 flights

Initial
overall

flight time

#Initial
pairings

Final
overall

flight time

Final
pairings #Iterations Solution

time (s)

Initial_Pairings_Alg 8,800 51 8,480 36 3 26.62
DFS method 10,705 38 8,480 37 12 82.72

According to Table 5, the objective function of the initial solutions generated by
Initial_Pairings_Alg and the DFS method are 8,800 and 10,705, respectively. In addition,
they contain 51 and 38 pairings, respectively. Both initial solutions lead to the final
overall FT of 8,480. Due to the better initial solution generated by Initial_Pairings_Alg
than the DFS method, the algorithm reached the final solution by three iterations in 26.62
seconds. However, for the initial solution generated by the DFS method, it reached the

 52 M. Radman and K. Eshghi

final solution by 12 iterations in 82.72 seconds. As a result, the better the initial solution,
the fewer the number of iterations and the less the solution time.

5.2.3 The effect of sorting variables on the performance of CPP_V2
As stated, in CPP_V2, the variables (pairings) of the problem are sorted based on the
ratio of their coefficients in the objective function to their coefficients in the knapsack
constraint. As a result, the values of the coefficients in the objective function affect the
sorting result. So far, these values have been the number of flights covered by the
pairings.

In this part, in addition to this rule (Sort_1), another rule (Sort_2) is introduced. In
Sort_2, the coefficient of the objective function of a pairing is calculated as the sum of
the values of the flights covered by it. The value of each flight is directly proportional to
the difficulty of its coverage by the available pairings. This means that the fewer pairings
a flight is present in, the more its value. Therefore, the value of a flight is calculated as
the inverse of the number of pairings involving that flight.

In addition to these two rules, another pair of rules are introduced, which are called
Sort_3 and Sort_4. In Sort_3, at each iteration, X0 is calculated through the sorting of
Sort_1. If Li ≤ sum of the costs (new_P) < Li–1 in Figure 6, is not satisfied, X0 is calculated
through the sorting of Sort_2. In Sort_4, in odd and even iterations, X0 is calculated
through the sorting of Sort_1 and Sort_2, respectively. The effect of these four rules on
the performance of the proposed algorithm is evaluated on the CPP with 251 flights in
Table 6.

In this table, the overall FT and the number of the resultant pairings, the number of
iterations and solution time of the algorithm are reported. The algorithm is run 5 times for
each rule and the best result is reported in this table. As it can be seen, different types of
sorting lead to a special solution. However, none of them is superior to others for any
columns of the table.
Table 6 The comparison of the effect of sorting of the variables on the performance of the

proposed algorithm to solve the CPP with 251 flights

 Overall flight time #Pairings #Iterations Solution time (s)
Sort_1 28,000 83 17 442.66
Sort_2 28,045 83 18 382.63
Sort_3 28,065 84 12 431.21
Sort_4 28,000 82 17 678.68

5.2.4 The effectiveness of knapsack problem solutions on the performance of
CPP_V1

The knapsack problem is an NP-hard problem and, therefore, as the size of the problem
increases, so does its solution time. For this reason, a heuristic method was used in this
work to solve it in CPP_V1. Table 7 shows the difference between optimal solutions of
knapsack problem and the solutions generated by the greedy method of Dantzig (1957)
on the performance of CPP_V1 when tested on problems with 41 and 103 flights.

 Solving airline crew pairing problems through constraint partitioning 53

Table 7 The effect of the exact and inexact knapsack problem solutions on the performance of
CPP_V1

CP
P_

V1
 (h

eu
ris

tic
 so

lut
ion

)

CP
P_

V1
 (e

xa
ct

so
lut

ion
)

So
lut

ion
 tim

e (
s)

So

lut
ion

 tim
e (

s)
#F

lig
hts

Ov

er
all

 fl
igh

t t
im

e
#P

air
ing

s
#I

ter
ati

on
s

Ite
ra

tio
n a

ve
ra

ge

To
tal

Ov
er

all
 fl

igh
t t

im
e

#P
air

ing
s

#I
ter

ati
on

s
Ite

ra
tio

n a
ve

ra
ge

To

tal

41

4,0
60

5

2
6.6

0
13

.2

4,0
60

5

3
8.8

1
26

.43

10
3

8,4
80

36

4

70
.67

28

2.6
6

8,4

80

37

4
16

8.5
3

67
4.1

2

 54 M. Radman and K. Eshghi

Table 7 shows that when using exact and heuristic methods to solve the knapsack
problem, the overall FT and the number of final pairings are almost the same, but the
average solution time of each iteration is almost 1.33 and 2.38 times larger for problems
with 41 and 103 flights, respectively, when using the exact method compared to the
heuristic one.

As can be seen, as the size of the problem increases with the exact method, due to the
NP-hardness of the knapsack problem, the solution time also increases, but the solution
quality is almost the same as the heuristic method. The result is that exact solutions of the
knapsack problem do not necessarily guarantee the lowest overall FT due to the existence
of random steps in each iteration of the algorithm. Therefore, the greedy method of
Dantzig (1957) is used to simplify the implementation of CPP_V1 in Section 4 so that
CPP_V2 takes less time while maintaining the quality of the generated solutions.

6 Conclusions

In this paper, a new decomposition algorithm based on constraint partitioning is
developed for solving CPPs. The new proposed method is based on the removal/addition
of some pairings from/to the feasible solution of the ‘partitioned structure’ of the
problem. The removal and addition sub-problems are a knapsack model for determining
the removing pairings and a problem for generating new pairings to improve the current
solution of a CPP, respectively. The second version of the proposed method is obtained
by simplifying the implementation of the first version, when the knapsack problem is
solved by a greedy method.

In this paper, we introduce an original technique not explored previously in the
literature. The proposed method removes some of the current pairings, in addition to
adding new pairings. Therefore, this procedure does not increase the problem size.

The proposed algorithm is applied to a case study whose data was available in the
literature of CPPs. Among others, the wider variety of the final solutions, potentially
enabling airline companies to choose the right one more easily and flexibly, and the
lower solution time are the main benefits of the proposed algorithm vis-à-vis the previous
method for the case. In addition, the new solution outperforms its previous one on some
important indicators of airline companies. In addition, the performance of the algorithm is
evaluated on some randomly-generated test problems, involving up to 320 flights.

Apart from a ‘partitioned structure’, examined in this paper, the authors of the present
study have worked on other structures including a ‘block-angular structure’ for SCPs and
have proved the relation between the optimal value of an SCP with a ‘block-angular
structure’ and its sub-problems through lower and upper bounds. It is our sincere hope
that the method proposed in this paper for ‘partitioned structures’ can be extended to
‘block-angular structures’.

The comparison or combination of the proposed method with others such as column
generation algorithm is also suggested as a promising area of study for future researchers.
Furthermore, use of other methods for Partition_Alg and Conditioned_Pairings_Alg are
other proposed future directions of this paper.

 Solving airline crew pairing problems through constraint partitioning 55

References
Aggarwal, D., Saxena, D.K., Bäck, T. and Emmerich, M. (2020a) Airline Crew Pairing

Optimization Framework for Large Networks with Multiple Crew Bases and Hub-And-Spoke
Subnetworks, arXiv preprint arXiv:2003.03994.

Aggarwal, D., Saxena, D.K., Bäck, T. and Emmerich, M. (2020b) A Novel Column Generation
Heuristic for Airline Crew Pairing Optimization with Large-Scale Complex Flight Networks,
arXiv preprint arXiv:2005.08636.

Aggarwal, D., Saxena, D.K., Bäck, T. and Emmerich, M. (2020c) On Initializing Airline Crew
Pairing Optimization for Large-Scale Complex Flight Networks, arXiv preprint arXiv:2003.
06423.

Aggarwal, D., Saxena, D.K., Back, T. and Emmerich, M. (2020d) Real-World Airline Crew Pairing
Optimization: Customized Genetic Algorithm Versus Column Generation Method, arXiv
preprint arXiv:2003.03792.

Aggarwal, D., Singh, Y.K. and Saxena, D.K. (2020e) On Learning Combinatorial Patterns to
Assist Large-Scale Airline Crew Pairing Optimization, arXiv preprint arXiv:2004.13714.

Aggarwal, D., Saxena, D.K., Emmerich, M. and Paulose, S. (2018) ‘On large-scale airline crew
pairing generation’, in 2018 IEEE Symposium Series on Computational Intelligence (SSCI),
November, pp.593–600 [online] https://doi.org/10.1109/SSCI.2018.8628699.

Agustín, A., Gruler, A., de Armas, J. and Juan, A.A. (2016) ‘Optimizing airline crew scheduling
using biased randomization: a case study’, Lecture Notes in Computer Science, pp.331–340
[online] https://doi.org/10.1007/978-3-319-44636-3_31.

AhmadBeygi, S., Cohn, A. and Weir, M. (2009) ‘An integer programming approach to generating
airline crew pairings’, Computers & Operations Research, Vol. 36, No. 4, pp.1284–1298
[online] https://doi.org/10.1016/j.cor.2008.02.001.

Aksoy, N. (2010) Pricing by Local Search in Column Generation for the Airline Crew Pairing
Problem, MSc dissertation.

Aydemir-Karadag, A., Dengiz, B. and Bolat, A. (2013) ‘Crew pairing optimization based on hybrid
approaches’, Computers & Industrial Engineering, Vol. 65, No. 1, pp.87–96 [online]
https://doi.org/10.1016/j.cie.2011.12.005.

Dantzig, G.B. (1957) ‘Discrete-variable extremum problems’, Operations Research, Vol. 5, No. 2,
pp.266–288 [online] https://doi.org/10.1287/opre.5.2.266.

Demirel, N.Ç. and Deveci, M. (2017) ‘Novel search space updating heuristics-based genetic
algorithm for optimizing medium-scale airline crew pairing problems’, International Journal
of Computational Intelligence Systems, Vol. 10, No. 1, pp.1082–1101 [online] https://doi.org/
10.2991/ijcis.2017.10.1.72.

Desaulniers, G., Lessard, F., Saddoune, M. and Soumis, F. (2020) ‘Dynamic constraint aggregation
for solving very large-scale airline crew pairing problems’, SN Operations Research Forum,
September, Vol. 1, No. 3, pp.1–23, Springer International Publishing [online] https://doi.org/
10.1007/s43069-020-00016-1.

Deveci, M. and Demirel, N.Ç. (2018a) ‘A survey of the literature on airline crew scheduling’,
Engineering Applications of Artificial Intelligence, Vol. 74, pp.54–69 [online] https://doi.org/
10.1016/j.engappai.2018.05.008.

Deveci, M. and Demirel, N.Ç. (2018b) ‘Evolutionary algorithms for solving the airline crew pairing
problem’, Computers & Industrial Engineering, Vol. 115, pp.389–406 [online] https://doi.org/
10.1016/j.cie.2017.11.022.

Dück, V., Wesselmann, F. and Suhl, L. (2011) ‘Implementing a branch and price and cut method
for the airline crew pairing optimization problem’, Public Transport, Vol. 3, No. 1, p.43
[online] https://doi.org/10.1007/s12469-011-0038-9.

Elfeky, E.Z. (2009) Evolutionary Algorithms for Constrained Optimization, Doctoral dissertation,
University of New South Wales, Canberra, Australia.

 56 M. Radman and K. Eshghi

Erdoğan, G., Haouari, M., Matoglu, M.Ö. and Özener, O.Ö. (2015) ‘Solving a large-scale crew
pairing problem’, Journal of the Operational Research Society, Vol. 66, No. 10,
pp.1742–1754 [online] https://doi.org/10.1057/jors.2015.2.

Haouari, M., Zeghal Mansour, F. and Sherali, H.D. (2019) ‘A new compact formulation for the
daily crew pairing problem’, Transportation Science, Vol. 53, No. 3, pp.811–828 [online]
https://doi.org/10.1287/trsc.2018.0860.

Kasirzadeh, A., Saddoune, M. and Soumis, F. (2017) ‘Airline crew scheduling: models, algorithms,
and data sets’, EURO Journal on Transportation and Logistics, Vol. 6, No. 2, pp.111–137
[online] https://doi.org/10.1007/s13676-015-0080-x.

Kato, K. and Sakawa, M. (2003) ‘Genetic algorithms with decomposition procedures for
multidimensional 0–1 knapsack problems with block angular structures’, IEEE Transactions
on Systems, Man, and Cybernetics, Part B (Cybernetics), Vol. 33, No. 3, pp.410–419,
DOI: 10.1109/TSMCB.2003.811126.

Klabjan, D., Johnson, E.L., Nemhauser, G.L., Gelman, E. and Ramaswamy, S. (2001) ‘Solving
large airline crew scheduling problems: random pairing generation and strong branching’,
Computational Optimization and Applications, Vol. 20, No. 1, pp.73–91 [online] https://
doi.org/10.1023/A:1011223523191.

Kornilakis, H. and Stamatopoulos, P. (2002) ‘Crew pairing optimization with genetic algorithms’,
in Hellenic Conference on Artificial Intelligence, Springer, Berlin, Heidelberg, pp.109–120
[online] https://doi.org/10.1007/3-540-46014-4_11.

Masipa, L. (2019) A Heuristic Approach to the Deterministic and Stochastic Air Crew Pairing
Problem, MSc dissertation, Stellenbosch, Stellenbosch University.

Novianingsih, K. and Hadianti, R. (2018) ‘A heuristic method for solving airline crew pairing
problems’, in MATEC Web of Conferences, EDP Sciences, Vol. 204 [online] https://doi.org/
10.1051/matecconf/201820402006.

Omran, M.G., Salman, A. and Engelbrecht, A.P. (2006) ‘Dynamic clustering using particle swarm
optimization with application in image segmentation’, Pattern Analysis and Applications,
Vol. 8, No. 4, pp.332 [online] https://doi.org/10.1007/s10044-005-0015-5.

Quesnel, F., Desaulniers, G. and Soumis, F. (2020) ‘A branch-and-price heuristic for the crew
pairing problem with language constraints’, European Journal of Operational Research,
Vol. 283, No. 3, pp.1040–1054 [online] https://doi.org/10.1016/j.ejor.2019.11.043.

Rasmussen, M.S., Lusby, R.M., Ryan, D.M. and Larsen, J. (2011) Subsequence Generation for the
Airline Crew Pairing Problem, Technical Report, Technical University of Denmark, DTU
Management Engineering.

Reisi, N.M. and Moslehi, G. (2013) ‘Cockpit crew pairing problem in airline scheduling: shortest
path with resources constraints approach’, International Journal of Industrial Engineering and
Production Research, Vol. 24, No. 4, pp.259–268.

Saddoune, M., Desaulniers, G. and Soumis, F. (2013) ‘Aircrew pairings with possible repetitions of
the same flight number’, Computers & Operations Research, Vol. 40, No. 3, pp.805–814
[online] https://doi.org/10.1016/j.cor.2010.11.003.

Wu, W., Hu, Y., Hashimoto, H., Ando, T., Shiraki, T. and Yagiura, M. (2016) ‘A column
generation approach to the airline crew pairing problem to minimize the total person-days’,
Journal of Advanced Mechanical Design, Systems, and Manufacturing, Vol. 10, No. 3 [online]
https://doi.org/10.1299/jamdsm.2016jamdsm0040.

Yaakoubi, Y., Soumis, F. and Lacoste-Julien, S. (2020) ‘Machine learning in airline crew pairing to
construct initial clusters for dynamic constraint aggregation’, EURO Journal on
Transportation and Logistics, Vol. 9, No. 4, p.100020 [online] https://doi.org/10.1016/
j.ejtl.2020.100020.

Zeren, B. and Özkol, İ. (2012) ‘An improved genetic algorithm for crew pairing optimization’,
Journal of Intelligent Learning Systems and Applications, Vol. 4, No. 1, p.70, DOI: 10.4236/
jilsa.2012.41007.

 Solving airline crew pairing problems through constraint partitioning 57

Zeren, B. and Özkol, I. (2016) ‘A novel column generation strategy for large scale airline crew
pairing problems’, Expert Systems with Applications, Vol. 55, pp.133–144 [online] https://
doi.org/10.1016/j.eswa.2016.01.045.

Appendix

The proposed mathematical model for CPP of the case study

In this appendix, a mathematical model for the case study of CPP presented in
Subsection 5.1 is proposed. The problem and its assumptions are fully explained before.
The notations of the model are shown in Table A1.
Table A1 The notations for the proposed mathematical model of the CPP of the case study

Notation Description
Model sets
F The set of flights
P The set of all feasible pairings
W The set of start days of the flights (in the case study, W = {1, 2, 3, 4, 5})
FO The set of flights start at home base (or their origin city is home base)
FD The set of flights end at home base (or their destination city is home base)
Fw The set of flights starting at day w ∈ W
AS The set of flight pairs (f, l) which can be sequential according to the regulations of

the airline company
Model indices
f, f′, l Index of a flight, f, f′, l ∈ F
p Index of a pairing, p ∈ P
w Index of a start day of a flight, w ∈ W
Model parameters
Of The origin city of flight f
Df The destination city of flight f
Dayf The start day of flight f
tf The duration of flight f
Sf The start time of flight f (which is considered among 0 to 1,440 for a 24-hour day)
Ef The end time of flight f (which is considered among 0 to 1,440 for a 24-hour day)
Model variables
xfp 1 if flight f is in pairing p

0 otherwise
yflp 1 if flight pair (f, l) is in pairing p

0 otherwise
ufp 1 if flight f is the start flight of pairing p

0 otherwise
vfp 1 if flight f is the end flight of pairing p

0 otherwise
zp 1 pairing p is chosen

0 otherwise

 58 M. Radman and K. Eshghi

Note that according to assumptions of Subsection 5.1, AS contains a flight pair (f, l) if:

• Df = Ol, meaning that the destination of flight f is the same as the origin of flight l.

• Sl – Ef ≥ 45 if (f, l ∈ Fw ∀w ∈ W), meaning that the start time of flight l is at least 45
minutes later than the end time of flight f if their start day is the same.

• 0 ≤ Dayl – Dayf ≤ 1, meaning that flight l should start on the same day or at most one
day after flight f.

According to the above definitions, the mathematical model of the problem is as follows:

min fp f
f p

Z x t= (A1)

s.t.

O
fp p

f F

u z p
∈

= ∀ (A2)

fp p
f

u z p≤ ∀ (A3)

:(,) :(,)

,
S S

flp lp lf p lp
f f l A f l f A

y v y u l p′
′ ′∈ ∈

− = − ∀  (A4)

D
fp p

f F

v z p
∈

= ∀ (A5)

fp p
f

V z p≤ ∀ (A6)

,flp fp
f

V x f p≤ ∀ (A7)

,flp lp
f

y x l p≤ ∀ (A8)

:(,)

,
S

fp flp fp
l f l A

x y v f p
∈

≤ + ∀ (A9)

:(,)

,
S

lp flp fp
f f l A

x y u l p
∈

≤ + ∀ (A10)

1fp
p

x f≥ ∀ (A11)

480 ,
w

f fp
f F

t x p w
∈

≤ ∀ (A12)

2fp f fp f
f f

v Day u Day p− ≤ ∀  (A13)

 Solving airline crew pairing problems through constraint partitioning 59

, , , , {0, 1} , ,fp flp fp fp px y u v z f l F p P∈ ∀ ∈ ∈ (A14)

In the above model, objective function (A1) minimises the cost of the selected pairings,
calculated as their overall FT. Constraints (A2) and (A3) state that each pairing, if
chosen, should contain one flight departing from the home base as a takeoff flight and
that at most one flight can start the pairing, respectively. Constraint (A4) is the balancing
constraint, which states that each flight of a pairing should have one preceding flight and
one following flight unless it is the first or last flight of a pairing. Constraints (A5) and
(A6) are similar to equations (A2) and (A3) and force the model to choose a final flight
from the set of flights that terminate at home base, and at most one flight can play the
role of the final flight for each pairing. Constraints (A7) through (A10) define the
relationship between variables x and y. According to equations (A7) and (A8), if a flight
is not in a pairing, none of the variables y containing that flight should receive a value.
According to equation (A9), if a flight is in a pairing, it should either have a subsequent
flight (the first summation) or be the last flight of that pairing. Similarly, according to
equation (A10), if a flight occurs in a pairing, it should have a preceding flight (the first
summation) or be the first flight of that pairing. Constraint (A11) states that each flight
should be in at least one pairing. Note that this constraint is not in the form of equality
since deadheading is allowed.

Constraints (A12) and (13) are directly related to airline regulations regarding
limitations on overall DFT and the number of days in a pairing, respectively. According
to equation (A12), the overall FT of flights belonging to the same pairing and the same
day must not exceed eight hours (or 480 minutes). Constraint (A13) states that the day of
the last flight of a pairing should be two days larger than the day of its initial flight so that
the length of a pairing is at most three days. Binary requirements on the variables are
expressed through equation (A14).

