Preserving privacy in mobile crowdsensing Online publication date: Mon, 19-Dec-2022
by Bayan Hashr Saeed Alamri; Muhammad Mostafa Monowar; Suhair Alshehri; Mohammad Haseeb Zafar; Iftikhar Ahmad Khan
International Journal of Sensor Networks (IJSNET), Vol. 40, No. 4, 2022
Abstract: Mobile crowdsensing (MCS) is a technique where individuals voluntarily utilise their devices to collect data to measure phenomena. In this article, a review of privacy-preserving in MCS is presented. First, it highlights MCS definitions, architecture, and unique characteristics. Then, it provides background knowledge about MCS. Afterward, a privacy-oriented MCS taxonomy in terms of privacy-oriented; data reliability, incentive, and task allocation user recruitment mechanisms, is devised. This work explores contemporary state-of-the-art issues related to privacy and security. It reviews 35 recent research published by high-quality sources and provides a topic-oriented survey for these efforts. It shows that only 16% of the papers evaluate their schemes through experiments on real smartphones, and Huawei is the most widely used mobile (45%). It shows an increasing trend in publications from 2017 till now. It highlights recent challenges faced the privacy in MCS and potential research directions for developing more advanced methods to optimise MCS.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Sensor Networks (IJSNET):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com